Артикул: 1034372

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Плоско-параллельное движение (193 шт.)

Название или условие:
Механизм состоит из ступенчатых колес 2-3, находящихся в зацеплении или связанных ременной передачей, зубчатой рейки 4 и груза 1, привязанного к концу нити, намотанной на одно из колес (рис. К2.0-К2.9, табл. К2). Радиусы ступеней равны соответственно: у колеса 2 – r2=6 см, R2=8 см, у колеса 3 – r3=12 см, R3 = 16 см. На ободьях колес расположены точки А и В.
В столбце «Дано» таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где: φ2(t) - закон вращения колеса 2, s4(t) – закон движения рейки 4, ω2(t) – закон изменения угловой скорости колеса 2, υ1(t) – закон изменения скорости груза 1 и т.д. (везде φ - выражено в радианах, s - в сантиметрах, t – в секундах). Положительное направление для φ и ω против хода часовой стрелки, для s1, s4 и υ1, υ4– вниз. Определить в момент времени t1 = 2 c указанные в таблице в столбцах «Найти» скорости (υ – линейные, ω – угловые) и ускорения (а – линейные, ε – угловые) соответствующих точек или тел (υ1 – скорость груза 1 и т.д.).
Вариант 55

Описание:
Указания. Задача К4 – на исследование вращательного движения твердого тела вокруг неподвижной оси. При решении задачи учесть, что когда два колеса находятся в зацеплении, скорость точки зацепления каждого колеса одна и та же, а когда два колеса связаны ременной передачей, то скорости всех точек ремня и, следовательно, точек, лежащих на ободе каждого из этих колес, в данный момент времени численно одинаковы; при этом считается, что ремень по ободу колеса не скользит.

Подробное решение в WORD

Изображение предварительного просмотра:

Механизм состоит из ступенчатых колес 2-3, находящихся в зацеплении или связанных ременной передачей, зубчатой рейки 4 и груза 1, привязанного к концу нити, намотанной на одно из колес (рис. К2.0-К2.9, табл. К2). Радиусы ступеней равны соответственно: у колеса 2 – r2=6 см, R2=8 см, у колеса 3 – r3=12 см, R3 = 16 см. На ободьях колес расположены точки А и В. <br />В столбце «Дано» таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где: φ<sub>2</sub>(t) - закон вращения колеса 2, s4(t) – закон движения рейки 4, ω2(t) – закон изменения угловой скорости колеса 2, υ1(t) – закон изменения скорости груза 1 и т.д. (везде φ - выражено в радианах, s - в сантиметрах, t – в секундах). Положительное направление для φ и ω против хода часовой стрелки, для s1, s4 и υ1, υ4– вниз.  <b>Определить</b> в момент времени t1 = 2 c  указанные в таблице в столбцах «Найти» скорости (υ – линейные, ω – угловые) и ускорения (а – линейные, ε – угловые) соответствующих точек или тел (υ1 – скорость груза 1 и т.д.).<br /> Вариант 55

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Индивидуальное задание №4
По заданному уравнению прямолинейного поступательного движения груза 1 определить скорость, а также касательное, нормальное и полное ускорения точки M механизма в момент времени, когда путь, пройденный грузом, равен S.
Вариант 2

Задание №5. Определить кинематические характеристики плоского механизма.
1. Изображаем плоский механизм
2. Показываем направления скоростей точек звеньев механизма
3. Определяем положение мгновенного центра скоростей
4. Показываем направления угловых споростей звеньев механизма.
5. Проводим вычисление скоростей.
6. Показываем направления ускорений точек плоского механизма
7. Проводим вычисление ускорений.
|OA| = 0,7 м; |AB| = 5b = 5 ∙ 0,7 = 3,5 м |AM| = 0,65 |AB| = 0,65 ∙ 3,5 = 2,27 м; VX = -0,66 м/с; VY = 0,22 м/с VA = 0,7 м/с; aX = -0,22 м/с2; aY = -0,66 м/с2; aA = 0,7 м/с2

К3.
Для заданного положения механизма(рис.1.3) найти скорость и ускорение точек А, В, а также угловую скорость и угловое ускорение звена, которому эти точки принадлежат.
Вариант 29.

К4.
Найти для заданного положения механизма скорости и ускорения точек A, B, C, а также угловую скорость и угловое ускорение звена, которому эти точки принадлежат.
Вариант 29

В период пуска вращение маховика определяется уравнением: φ=1/3t3; Найти угловую скорость маховика при t = 2 сек.Нарисовать указанные механизмы в масштабе в соответствии со значениями исходных данных, указанных в таблице.
1. Определить скорости всех точек, указанных на схемах механизмов, а также угловые скорости звеньев механизмов двумя способами: по векторной формуле и с помощью МЦС.
2. Определить ускорения всех точек, указанных на схемах механизмов, а также угловые ускорения звеньев механизмов с помощью векторной формулы.
Во всех вариантах колеса перекатываются без проскальзывания.
Вариант 13

Задание №4. Определить скорость и ускорение точки
1. Записываем уравнения движения точки
2. Находим скорость точки
3. Находим ускорение точки
4. Вычисляем кинематические характеристики движения точки.
5. Вычисляем касательное и нормальное ускорения точки.
6. Находим траекторию движения точки.
7. Проводим построения.
b = 0,7 м; |AM|/|AB| = 0,65; ω = 1 рад/с; 1 = 1,25 с

Задача №3
Вращение ротора авиационного двигателя, воздушного винта самолета, винта вертолета (несущего или рулевого) при запуске двигателя характеризуется угловым ускорением ε и временем t1 выхода на режим малого газа. К моменту t1 ротор (винт) имеет угловую скорость ω1, частоту вращения n1=5160 об/мие, угол поворота φ1 и совершает z1 = 1290 оборотов.
Точка, лежащая на радиусе r=0,6 м , в какой-то другой момент времени tr имеет скорость vr , касательное ускорение aτT и нормальное ускорение anT = 56200 м/с2.
Принимая вращение ротора (винта) равнопеременным, определить неизвестные параметры.
Задача 3
Мотор делает n=1500 об/мин и останавливается после 120 оборотов.
Сколько времени прошло с момента включения до остановки мотора, если движение считать равнозамедленным?
Вопрос: как направлены вектора угловой скорости и ускорения при замедленном вращении мотора?
Задача К-6.3.
Определить радиусы 1 и 5 фигуры. Затем найти угловые скорости остальных фигур.