Артикул: 1001547

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название или условие:
Граф состояний, предельные вероятности, чистый доход

Описание:
Построить граф состояний следующего процесса:
Устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Найти предельные вероятности для системы при
λ01 = 1, λ02 = 2, λ10 = 4, λ13 = 2, λ20 = 6, λ23 = 1, λ31 = 6, λ32 = 4,
Дайте анализ полученному результату.
Найдите средний чистый доход от эксплуатации в стационарным режиме системы S, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 денежных единиц, а их ремонт требует затрат соответственно в 8 и 4 денежные единицы.


Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В зубоврачебном кабинете три кресла, а в коридоре три стула для ожидания приема. Поток клиентов – простейший с интенсивностью 12 клиентов в час. Время обслуживания – показательное со средним 20 мин Если все стулья в коридоре заняты, то клиент не становится в очередь. Определить характеристики обслуживанияНайти оптимальное число телефонных номеров на предприятии, если заявки на переговоры поступают с интенсивностью 1,2 заявки в минуту, а средняя продолжительность разговора по телефону составляет tобс = 2 минуты. Найти также вероятность того, что в СМО за 3 минуты поступит: а) точно 2 заявки, б) не более 2-х заявок.
Задание 14. В системе передачи цифровой информации передается речь в цифровом виде. Речевые пакеты передаются через два транзитных канала, буферируясь в накопителях перед каждым каналом. Время передачи пакета по каналу составляет 5 мс. Пакеты поступают через 6±3 мс. Пакеты, передававшиеся более 10 мс, на выходе системы уничтожаются, так как их появление в декодере значительно снизит качество передаваемой речи. Уничтожение более 30% пакетов недопустимо. При достижении такого уровня система за счет ресурсов ускоряет передачу до 4 мс на канал. При снижении уровня до приемлемого, происходит отключение ресурсов. Смоделировать 10 с работы системы. Определить частоту уничтожения пакетов и частоту подключения ресурса.Имеется двухканальная система массового обслуживания с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки в час. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход с = 4 рубля. Содержание каждого канала обходится 2 рубля в час. Выяснить: выгодно или нет в экономическом отношении увеличить число каналов системы до 3.
Одноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказаВ билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.
В вычислительном центре работает 5 персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность λ=10 задач в час. Среднее время решения задачи равно 12 мин. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ). На автозаправочной станции 1 колонка. Площадка при станции допускает пребывание в очереди двух машин; если она занята, то прибывшая к станции машина проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 0,2 (машин в минуту). Процесс заправки продолжается в среднем 10 минут. Определить вероятность отказа.
Отрезок длины 35 поделен на две части длины 25 и 10 соответственно. Наудачу 6 точек последовательно бросают на отрезок. X – случайная величина, равная числу точек, попавших на отрезок длины 10. Найдите математическое ожидание и среднее квадратичное отклонение величины X. Одноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока λ=0,95 вызова в минуту. Средняя продолжительность разговора t=1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Сколько телефонов должно работать параллельно, чтобы вероятность отказа была меньше 1/10?