Артикул: 1001547

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название:Граф состояний, предельные вероятности, чистый доход

Описание:
Построить граф состояний следующего процесса:
Устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время. Найти предельные вероятности для системы при
λ01 = 1, λ02 = 2, λ10 = 4, λ13 = 2, λ20 = 6, λ23 = 1, λ31 = 6, λ32 = 4,
Дайте анализ полученному результату.
Найдите средний чистый доход от эксплуатации в стационарным режиме системы S, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 денежных единиц, а их ремонт требует затрат соответственно в 8 и 4 денежные единицы.


Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Имеется двухканальная система массового обслуживания с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки в час. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход с = 4 рубля. Содержание каждого канала обходится 2 рубля в час. Выяснить: выгодно или нет в экономическом отношении увеличить число каналов системы до 3.Пять ткачих обслуживают 20 ткацких станков. Средняя продолжительность бесперебойной работы станка-30 минут, устранение неисправности (обрывания нити) занимает в среднем 1,5 минуты. Найти характеристики СМО
К пункту мойки автомашин, рассчитанному на одну автомашину, подъезжает в среднем 5 машин в час. Процесс мойки одной автомашины занимает в среднем 15 минут. Рядом с пунктом мойки расположена площадка для ожидающих мойки автомашин, вмещающая 3 автомашины. Если площадка занята, то приезжающие для мойки автомашины уезжают в другие пункты мойки. Определить показатели эффективности этой СМОНа вход многоканальной СМО с отказами поступает поток заявок, интенсивность которого составляет 11 заявок/час. Среднее время обслуживания одной заявки 0,15 часа. Каждая заявка приносит доход 130 руб., а содержание одного канала обходится в 122 руб./час. Найти оптимальное число каналов СМО
Одноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока λ=0,95 вызова в минуту. Средняя продолжительность разговора t=1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Сколько телефонов должно работать параллельно, чтобы вероятность отказа была меньше 1/10? На склад в среднем прибывает 3 машины в час. Разгрузку осуществляют 3 бригады грузчиков. Среднее время разгрузки машины - 1 час. В очереди в ожидании разгрузки могут находиться не более 4-х машин. Дать оценку работы СМО.
Прибор (сервер), обрабатывающей три сообщения в 1с. Пусть имеется оборудование, которое может обрабатывать три сообщения в 1 с (µ=3). Поступает в среднем два сообщения в 1с, причем в соответствии c распределением Пуассона. Какая часть этих сообщений будет обрабатываться сразу же после поступления?В ОТК цеха работают три контролера. Если деталь поступает в ОТК, когда все контролеры заняты обслуживанием ранее поступивших деталей, то она проходит непроверенной. Среднее число деталей, поступающих в ОТК в течение часа, равно 24, среднее время, которое затрачивает один контролер на обслуживание одной детали, равно 5 мин. Определить вероятность того, что деталь пройдет ОТК необслуженной, насколько загружены контролеры и сколько их необходимо поставить, чтобы Р*обс>=0,95 (* — заданное значение Робс).
На пункт техосмотра поступает простейший поток заявок (автомобилей) интенсивности λ=4 машины в час. Время осмотра распределено по показательному закону и равно в среднем 17 мин., в очереди может находиться не более 5 автомобилей. Определите вероятностные характеристики пункта техосмотра в установившемся режиме По телефонной линии на ГМСКЦ поступает в среднем 1, 2 телефонных вызовов в минуту. Средняя продолжительность разговора составляет 2 минуты. Найти основные характеристики С (как системы) и оценить эффективность ее работы.