Найдено работ с тегом «MicroCap» – 336
Артикул №1089603
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 12.04.2018)
Для электрической цепи, показанной на рисунке 1, составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа, определить токи во всех ветвях, пользуясь любым известным методом расчета электрических цепей постоянного тока. Правильность решения задачи проверить, составив уравнение баланса мощности. Исходные данные приведены в таблице 1.
Вариант 17

Для электрической цепи, показанной на рисунке 1, составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа, определить токи во всех ветвях, пользуясь любым известным методом расчета электрических цепей постоянного тока. Правильность решения задачи проверить, составив уравнение баланса мощности. Исходные данные приведены в таблице 1.<br /> Вариант 17
Поисковые тэги: Законы Кирхгофа, Баланс мощностей, MicroCap

Артикул №1089538
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 12.04.2018)
Для заданного резистивного круга с заданными параметрами элементов (см. табл.1) выполнить следующее:
1. Управляемую ветвь зависимого источника заменить на резистивный элемент с сопротивлением R0=1 кОм.
2. Для полученного в п.1 цепи методом эквивалентного источника напряжения (по теореме Тевенена для четных вариантов) или эквивалентного источника тока (по теореме Нортона для нечетных вариантов) в сочетании с методом суперпозиции и другими видами эквивалентных преобразований определить напряжение и ток на резистивном элементе Rх.

Для заданного резистивного круга с заданными параметрами элементов (см. табл.1) выполнить следующее:  <br />1. Управляемую ветвь зависимого источника заменить на резистивный элемент с сопротивлением R0=1 кОм.  <br />2. Для полученного в п.1 цепи методом эквивалентного источника напряжения (по теореме Тевенена для четных вариантов) или эквивалентного источника тока (по теореме Нортона для нечетных вариантов) в сочетании с методом суперпозиции и другими видами эквивалентных преобразований определить напряжение и ток на резистивном элементе Rх.
Поисковые тэги: Метод эквивалентного генератора (МЭГ), MicroCap

Артикул №1089536
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 12.04.2018)
Для электрической схемы определить заданным методом (если Y=1, то методом наложения, если Y=2, то методом контурных токов, если Y=3, то методом уравнений Кирхгофа) токи во всех ветвях, напряжение на каждом элементе, баланс мощностей, мощность, выделяемую (потребляемую) каждым элементом, режимы работы источников.
Для электрической схемы определить методом эквивалентного генератора (если D=1, то методом эквивалентного генератора напряжения, если D=0, то методом эквивалентного генератора тока) ток в заданной ветви с номером K.
Проверить правильность решения задачи составлением уравнений и проверкой выполнения первого закона Кирхгофа для всех узлов, второго закона Кирхгофа для трех контуров.
Построить потенциальную диаграмму для K-того замкнутого контура (если K превышает число контуров в цепи, то принимать K= K-2).
Вариант 8.
Дано:
Е1 = 15 В, Е7 = 30 В,
R1 = 8 Ом, R2 = 2 Ом, R3 = 9 Ом, R4 = 7 Ом, R5 = 8 Ом, R6 = 5 Ом, R7 = 6 Ом, R8 = 7 Ом, R9 = 6 Ом, R10 = 7 Ом, R11 = 6 Ом, R12 = 7 Ом
Y = 2 (метод контурных токов)
D = 1 (метод эквивалентного генератора напряжения)
K = 4

Для электрической схемы определить заданным методом (если Y=1, то методом наложения, если Y=2, то методом контурных токов, если Y=3, то методом уравнений Кирхгофа) токи во всех ветвях, напряжение на каждом элементе, баланс мощностей, мощность, выделяемую (потребляемую) каждым элементом, режимы работы источников. <br />Для электрической схемы определить методом эквивалентного генератора (если D=1, то методом эквивалентного генератора напряжения, если D=0, то методом эквивалентного генератора тока) ток в заданной ветви с номером   K.<br /> Проверить правильность решения задачи составлением уравнений и проверкой выполнения первого закона Кирхгофа для всех узлов, второго закона Кирхгофа для трех контуров.  <br />Построить потенциальную диаграмму для K-того замкнутого контура (если K превышает число контуров в цепи, то принимать K= K-2).    <br />Вариант 8. <br />Дано: <br />Е1 = 15 В, Е7 = 30 В,  <br />R1 = 8 Ом, R2 = 2 Ом, R3 = 9 Ом, R4 = 7 Ом, R5 = 8 Ом, R6 = 5 Ом, R7 = 6 Ом, R8 = 7 Ом, R9 = 6 Ом, R10 = 7 Ом, R11 = 6 Ом, R12 = 7 Ом <br />Y = 2 (метод контурных токов) <br />D = 1 (метод эквивалентного генератора напряжения) <br />K = 4
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Потенциальная диаграмма, MicroCap

Артикул №1089533
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 12.04.2018)
Для сложной цепи постоянного тока требуется:
1. Определить неизвестные токи и ЭДС во всех ветвях методом контурных токов и методом узловых потенциалов.
2. Составить необходимое число уравнений по законам Кирхгофа, проверив их выполнение по результатам расчета из п.1
3. Составить баланс мощностей.
4. Определить напряжения Uab и Ubc
5. Методом эквивалентного генератора определить ток I1 для ветви, содержащей R1. Определить величину ЭДС, дополнительное включение которой в данную ветвь приведет к изменению направления тока I1.
6. По результатам расчета п. 5 определить значение сопротивления в первой ветви, при котором в нем выделялась бы максимальная мощность Pmax. Определить величину Pmax
7. Определить линейную зависимость тока I3 в третьей ветви от напряжения U1 первой ветви при изменении сопротивления R1 и неизменных остальных параметрах цепи. Построить зависимость I3=f(U1). Из графика определить значения тока I3 при R1=0
8. Определить входную проводимость первой ветви и взаимную проводимость между первой и второй ветвями.
9. Построить потенциальную диаграмму для внешнего контура.
Вариант 18 группа 4

Для сложной цепи постоянного тока требуется:<br /> 1.	Определить неизвестные токи и ЭДС во всех ветвях методом контурных токов и методом узловых потенциалов. <br />2.	Составить необходимое число уравнений по законам Кирхгофа,  проверив их выполнение по результатам расчета из п.1 <br />3.	Составить баланс мощностей. <br />4.	Определить напряжения Uab и Ubc <br />5.	Методом эквивалентного генератора определить ток I1 для ветви, содержащей R1. Определить величину ЭДС, дополнительное включение которой в данную ветвь приведет к изменению направления тока I1. <br />6.	По результатам расчета п. 5 определить значение сопротивления в первой ветви, при котором в нем выделялась бы максимальная мощность Pmax. Определить величину Pmax <br />7.	Определить линейную зависимость тока I3 в третьей ветви от напряжения U1 первой ветви при изменении сопротивления R1 и неизменных остальных параметрах цепи. Построить зависимость I3=f(U1). Из графика определить значения тока I3 при R1=0 <br />8.	Определить входную проводимость первой ветви и взаимную проводимость между первой и второй ветвями. <br />9.	Построить потенциальную диаграмму для внешнего контура.<br /> Вариант 18 группа 4
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Баланс мощностей, Потенциальная диаграмма, Метод узловых потенциалов (напряжений; МУП), MicroCap

Артикул №1089426
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 12.04.2018)
Дано: Е1 = 15 В, Е2 = 20 В, R1 = R4 = R6 = 3 Ом, R2 = R3 = R5 = 1 Ом. Найти токи в ветвях, используя первый и второй законы Кирхгофа
Дано: Е<sub>1</sub> = 15 В, Е<sub>2</sub> = 20 В, R<sub>1</sub> = R<sub>4</sub> = R<sub>6</sub> = 3 Ом, R<sub>2</sub> = R<sub>3</sub> = R<sub>5</sub> = 1 Ом. Найти токи в ветвях, используя первый и второй законы Кирхгофа
Поисковые тэги: Законы Кирхгофа, MicroCap

Артикул №1087814
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 31.03.2018)
Дано: R1 = 10 Ом, R2 = 4 Ом, R3 = 6 Ом, R4 = 8 Ом, R5 = 10 Ом, R6 = 12 Ом, R7 = 2 Ом, Е1 = 40 В, E2 = 60 В, E3 = 80 В, E4 = 120 В
Определить токи в ветвях по законам Кирхгофа.

Дано: R<sub>1</sub> = 10 Ом, R<sub>2</sub> = 4 Ом, R<sub>3</sub> = 6 Ом, R<sub>4</sub> = 8 Ом, R<sub>5</sub> = 10 Ом, R<sub>6</sub> = 12 Ом, R<sub>7</sub> = 2 Ом, Е<sub>1</sub> = 40 В, E<sub>2</sub> = 60 В, E<sub>3 </sub>= 80 В, E<sub>4</sub> = 120 В <br /> Определить токи в ветвях по законам Кирхгофа.
Поисковые тэги: Законы Кирхгофа, MicroCap

Артикул №1087772
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.03.2018)
В электрической цепи постоянного тока, схема, метод анализа и параметры элементов которой заданы для каждого варианта в таблице, определить:
1) Токи в ветвях (их значения и фактическое положительное направление)
2) Показания вольтметра и ваттметра
3) Режим работы источников ЭДС.
Составить баланс мощностей.
Вариант 05.
Дано: Схема 1.2
Положение выключателя – замкнут
Метод анализа – контурные токи
Е1 = 40 В Е2 = 36 В Е3 = 24 В
R01 = 0.1 Ом R02 = 0.1 Ом R03 = 0.2 Ом
R1 = 2.9 Ом R2 = 4.9 Ом R3 = 3.8 Ом R4 = 1 Ом R5 = 2 Ом R6 = 3 Ом

В электрической цепи постоянного тока, схема, метод анализа и параметры элементов которой заданы для каждого варианта в таблице, определить: <br />1)	Токи в ветвях (их значения и фактическое положительное направление) <br />2)	Показания вольтметра и ваттметра <br />3)	Режим работы источников ЭДС. <br />Составить баланс мощностей. <br />Вариант 05. <br />Дано: Схема 1.2 <br />Положение выключателя – замкнут <br />Метод анализа – контурные токи <br />Е1 = 40 В Е2 = 36 В Е3 = 24 В <br />R01 = 0.1 Ом R02 = 0.1 Ом R03 = 0.2 Ом <br />R1 = 2.9 Ом R2 = 4.9 Ом R3 = 3.8 Ом R4 = 1 Ом R5 = 2 Ом R6 = 3 Ом
Поисковые тэги: Метод контурных токов (МКТ), Баланс мощностей, MicroCap

Артикул №1087769
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 15.05.2018)
Дано:
Z1=2-j Ом;
Z2=1+0,5j Ом;
Z4=1,5+j Ом;
Z5=1+0j Ом;
Zн=1+0j Ом;
e(t)=10·sin⁡(ωt+30°)В;
i(t)=1·sin(ωt+90°)А.
1. Рассчитать значения параметров элементов схемы и вычертить схему электрической цепи в окончательном виде.
2. Определить значения токов в ветвях, используя метод контурных токов
3. Определить значения токов в ветвях, используя метод узловых напряжений.
4. Построить топографическую диаграмму напряжений и векторную диаграмму токов.
5. Определить значение тока в нагрузке Zн методом эквивалентного генератора напряжения

Дано: <br />Z<sub>1</sub>=2-j Ом; <br />Z<sub>2</sub>=1+0,5j Ом; <br />Z<sub>4</sub>=1,5+j Ом; <br />Z<sub>5</sub>=1+0j Ом; <br />Z<sub>н</sub>=1+0j Ом; <br />e(t)=10·sin⁡(ωt+30°)В; <br />i(t)=1·sin(ωt+90°)А. <br /> 1. Рассчитать значения параметров элементов схемы и вычертить схему электрической цепи в окончательном виде. <br /> 2. Определить значения токов в ветвях, используя метод контурных токов <br /> 3. Определить значения токов в ветвях, используя метод узловых напряжений. <br /> 4. Построить топографическую диаграмму напряжений и векторную диаграмму токов. <br /> 5. Определить значение тока в нагрузке Z<sub>н</sub> методом эквивалентного генератора напряжения
Поисковые тэги: Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Векторная (топографическая) диаграмма, MicroCap

Артикул №1087759
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 30.03.2018)
На входе электрической схемы действует напряжение, изменяющееся по заданному закону. В соответствии с номером варианта необходимо с помощью интеграла Дюамеля найти закон изменения по времени тока в одной из ветвей схемы или напряжения на заданном участке схемы.
Необходимо записать аналитическое выражение искомой величины для всех интервалов времени. При этом в зависимости от формы входного напряжения решение будет содержать два или три соотношения, каждое из которых справедливо для соответствующего временного интервала.
По найденному аналитическому выражению нужно рассчитать и построить временную диаграмму в интервале 0 ÷ 2t1 или 0 ÷ 2t2 (в зависимости от сигнала). Значения t1 и t2 студент должен выбрать самостоятельно и согласовать с преподавателем.
Дано
Схема: рис.4
Сигнал: рис.9
A=23 В;
R1=23 Ом; R2=27 Ом; R3=36 Ом; R4=10 Ом; R5=36 Ом; C1=13 мкФ; L1=28 мГн;
Найти UR2(t)-?

На входе электрической схемы действует напряжение, изменяющееся по заданному закону. В соответствии с номером варианта необходимо с помощью интеграла Дюамеля найти закон изменения по времени тока в одной из ветвей схемы или напряжения на заданном участке схемы. <br />Необходимо записать аналитическое выражение искомой величины для всех интервалов времени. При этом в зависимости от формы входного напряжения решение будет содержать два или три соотношения, каждое из которых справедливо для  соответствующего временного интервала. <br />По найденному аналитическому выражению нужно рассчитать и построить временную диаграмму в интервале 0 ÷ 2t1 или 0 ÷ 2t2 (в зависимости от сигнала). Значения t1 и t2 студент должен выбрать самостоятельно и согласовать с преподавателем. <br /><b>Дано </b><br />Схема: рис.4 <br />Сигнал: рис.9 <br />A=23 В; <br />R1=23 Ом; R2=27 Ом; R3=36 Ом; R4=10 Ом; R5=36 Ом; C1=13 мкФ; L1=28 мГн; <br />Найти U<sub>R2</sub>(t)-?
Поисковые тэги: Интеграл Дюамеля, MicroCap

Артикул №1087757
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.03.2018)
Расчет цепей с источниками постоянных воздействий
Задание
1. По заданному номеру варианта изобразить цепь, подлежащую расчету, выписать значения параметров элементов.
2. Записать необходимое количество уравнений по первому и второму законам Кирхгофа, подставить численные значения всех коэффициентов. Полученную систему уравнений не решать.
3. Определить токи во всех ветвях цепи и напряжение на источнике тока методом контурных токов.
4. Составить баланс мощностей и оценить погрешность расчета.
5. Рассчитать цепь методом узловых потенциалов, определив токи во всех ветвях и напряжение на источнике тока. Результаты расчета сравнить с полученными по п. 3.
6. Рассчитать ток в одной из ветвей методом эквивалентного источника напряжения.
7. Рассчитать ток в одной из ветвей методом наложения.
Вариант 6
Источники напряжения в ветвях 2.4
Источник тока в ветви 5
Резисторы в ветвях 1, 2, 3, 5, 6, 7

Расчет цепей с источниками постоянных воздействий  <br /><b>Задание  </b><br />1. По заданному номеру варианта изобразить цепь, подлежащую расчету, выписать значения параметров элементов.  <br />2. Записать необходимое количество уравнений по первому и второму законам Кирхгофа, подставить численные значения всех коэффициентов. Полученную систему уравнений не решать. <br />3. Определить токи во всех ветвях цепи и напряжение на источнике тока методом контурных токов.  <br />4. Составить баланс мощностей и оценить погрешность расчета.  <br />5. Рассчитать цепь методом узловых потенциалов, определив токи во всех ветвях и напряжение на источнике тока. Результаты расчета сравнить с полученными по п. 3.  <br />6. Рассчитать ток в одной из ветвей методом эквивалентного источника напряжения.  <br />7. Рассчитать ток в одной из ветвей методом наложения. <br /><b>Вариант 6</b> <br />Источники напряжения в ветвях 2.4 <br />Источник тока в ветви 5 <br />Резисторы в ветвях 1, 2, 3, 5, 6, 7
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Баланс мощностей, Метод узловых потенциалов (напряжений; МУП), MicroCap, Метод наложения

Артикул №1087231
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 27.03.2018)
Расчет разветвленной линейной цепи постоянного тока с несколькими источниками электрической энергии
Для данных цепей:
1. Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать систему уравнений не следует.
2. Определить токи в ветвях методом контурных токов.
3. Определить режимы работы активных элементов и составить баланс мощностей.
Вариант 81

Расчет разветвленной линейной цепи постоянного тока с несколькими источниками электрической энергии 	<br />Для данных цепей: <br />1.	Составить уравнения для определения токов путем непосредственного применения законов Кирхгофа. Решать систему уравнений не следует. <br />2.	Определить токи в ветвях методом контурных токов. <br />3.	Определить режимы работы активных элементов и составить баланс мощностей.  <br />Вариант 81
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Баланс мощностей, MicroCap

Артикул №1086676
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Нелинейные цепи

(Добавлено: 23.03.2018)
ЗАДАЧА 15. Определить токи и напряжения всех участков цепи
Заменить нелинейный элемент линейным для исследования цепи при небольших отклонениях от заданного режима. Нелинейный элемент симметричен U(-I) = -U(I) и имеет следующую вольтамперную характеристику

ЗАДАЧА 15. Определить токи и напряжения всех участков цепи<br />Заменить нелинейный элемент линейным для исследования цепи при небольших отклонениях от заданного режима. Нелинейный элемент симметричен   U(-I) = -U(I) и имеет следующую вольтамперную характеристику
Поисковые тэги: MicroCap

Артикул №1085782
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 16.03.2018)
Расчет цепей постоянного тока
1. Методом непосредственного применения законов Кирхгофа рассчитать токи во всех ветвях одной из схем рис. 1.1-1.24
2. Рассчитать токи в ветвях методом контурных токов. Сопоставить результаты расчетов п.1 и п.2
3. Составить баланс мощностей для данной схемы
4. Построить для внешнего контура схемы потенциальную диаграмму. Определить по ней токи в ветвях этого контура.
5. Определить ток в ветви с сопротивлением R1 методом эквивалентного генератора.
Вариант 1
Дано:
R1 = 40 Ом, R2 = 48 Ом, R3 = 60 Ом, R4 = 31 Ом, R5 = 82 Ом, Е1 = 0, Е2 = 30 В, Е3 = 80 В

Расчет цепей постоянного тока <br />1.	Методом непосредственного применения законов Кирхгофа рассчитать токи во всех ветвях одной из схем рис. 1.1-1.24 <br />2.	Рассчитать токи в ветвях методом контурных токов. Сопоставить результаты расчетов п.1 и п.2 <br />3.	Составить баланс мощностей для данной схемы <br />4.	Построить для внешнего контура схемы потенциальную диаграмму. Определить по ней токи в ветвях этого контура. <br />5.	Определить ток в ветви с сопротивлением R1 методом эквивалентного генератора.<br /> Вариант 1<br /><b>Дано:</b><br /> R1 = 40 Ом, R2 = 48 Ом, R3 = 60 Ом, R4 = 31 Ом, R5 = 82 Ом,  Е1 = 0, Е2 = 30 В, Е3 = 80 В
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Баланс мощностей, Потенциальная диаграмма, MicroCap

Артикул №1085776
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 16.03.2018)
Определить токи в ветвях по законам Кирхгофа
Вариант 21

Определить токи в ветвях по законам Кирхгофа<br /> Вариант 21
Поисковые тэги: Законы Кирхгофа, MicroCap

Артикул №1085773
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 16.03.2018)
Для сложной цепи постоянного тока требуется:
1. Определить неизвестные токи и ЭДС во всех ветвях методом контурных токов и методом узловых потенциалов.
2. Составить необходимое число уравнений по законам Кирхгофа, проверив их выполнение по результатам расчета из п.1
3. Составить баланс мощностей.
4. Определить напряжения Uab и Ubc
5. Методом эквивалентного генератора определить ток I1 для ветви, содержащей R1. Определить величину ЭДС, дополнительное включение которой в данную ветвь приведет к изменению направления тока I1.
6. По результатам расчета п. 5 определить значение сопротивления в первой ветви, при котором в нем выделялась бы максимальная мощность Pmax. Определить величину Pmax
7. Определить входную проводимость первой ветви и взаимную проводимость между первой и второй ветвями.
8. Построить потенциальную диаграмму для внешнего контура.

Для сложной цепи постоянного тока требуется: <br />1.	Определить неизвестные токи и ЭДС во всех ветвях методом контурных токов и методом узловых потенциалов. <br />2.	Составить необходимое число уравнений по законам Кирхгофа,  проверив их выполнение по результатам расчета из п.1 <br />3.	Составить баланс мощностей. <br />4.	Определить напряжения Uab и Ubc <br />5.	Методом эквивалентного генератора определить ток I1 для ветви, содержащей R1. Определить величину ЭДС, дополнительное включение которой в данную ветвь приведет к изменению направления тока I1. <br />6.	По результатам расчета п. 5 определить значение сопротивления в первой ветви, при котором в нем выделялась бы максимальная мощность Pmax. Определить величину Pmax <br />7.	Определить входную проводимость первой ветви и взаимную проводимость между первой и второй ветвями. <br />8.	Построить потенциальную диаграмму для внешнего контура.
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Баланс мощностей, Потенциальная диаграмма, Метод узловых потенциалов (напряжений; МУП), MicroCap

Артикул №1085772
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 16.03.2018)
1. Для постоянных источников катушка замкнута, конденсатор разомкнут. На расчетной схеме проставляются стрелочки искомых расчетных токов и потенциалы улов. Узлы нумеруются числами: 0, 1, 2 и т.д. Нижний узел считать базовым и равным нулю
2. Для расчетной схемы записать систему уравнений по методу узловых потенциалов (напряжений). Решить эту систему уравнений и найти потенциалы всех узлов. Затем найти все токи. Результаты свести в таблицу.
3. Составить баланс мощности. Подставить числовые значения и рассчитать. Убедиться, что баланс сходится.
4. Упростить расчетную схему, чтобы получить схему с двумя узлами. Нарисовать эту схему. Для этой упрощенной схемы применить метод двух узлов (одно уравнение) и найти все токи. Убедиться, что получили тот же результат.
Вариант 27
Дано: Е = 20 В, J = 25 мА, R1 = 700 Ом, R2 = 400 Ом, R3 = 700 Ом, R4 = 300 Ом, R5 = 300 Ом, Rн = 300 Ом

1.	Для постоянных источников катушка замкнута, конденсатор разомкнут. На расчетной схеме проставляются стрелочки искомых расчетных токов и потенциалы улов. Узлы нумеруются числами: 0, 1, 2 и т.д. Нижний узел считать базовым и равным нулю <br />2.	Для расчетной схемы записать систему уравнений по методу узловых потенциалов (напряжений). Решить эту систему уравнений и найти потенциалы всех узлов. Затем найти все токи. Результаты свести в таблицу. <br />3.	Составить баланс мощности. Подставить числовые значения и рассчитать. Убедиться, что баланс сходится. <br />4.	Упростить расчетную схему, чтобы получить схему с двумя узлами. Нарисовать эту схему. Для этой упрощенной схемы применить метод двух узлов (одно уравнение) и найти все токи. Убедиться, что получили тот же результат. <br />Вариант 27   <br /><b>Дано:</b> Е = 20 В, J = 25 мА, R1 = 700 Ом, R2 = 400 Ом, R3 = 700 Ом, R4 = 300 Ом, R5 = 300 Ом, Rн = 300 Ом
Поисковые тэги: Баланс мощностей, Метод узловых потенциалов (напряжений; МУП), Метод двух узлов, MicroCap

Артикул №1085768
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 16.03.2018)
Определить токи во всех ветвях цепи, приведенной на рис.1
Величины сопротивлений приведены в Омах, источников ЭДС – в вольтах.
Вариант 77

Определить токи во всех ветвях цепи, приведенной на рис.1 <br /> Величины сопротивлений приведены в Омах, источников ЭДС – в вольтах.<br /> Вариант 77
Поисковые тэги: Метод контурных токов (МКТ), MicroCap

Артикул №1085767
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  второго рода

(Добавлено: 16.03.2018)
Дана электрическая цепь, в которой происходит коммутация (рис. 5.1-5.20). В цепи действует постоянная Э.Д.С. Параметры цепи приведены в табл 4.1. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжения на каком-либо элементе или между заданными точками схемы.
Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени на интервале t=0..3/|pmin|, где |pmin| - меньший по модулю корень характеристического уравнения.
Вариант 22
Дано:
Рисунок 5.2
E=150 В; L=2 мГн; C=5 мкФ; R1=5 Ом; R2=10 Ом; R3=5 Ом; R4=5 Ом;
Найти i2(t)-?

Дана электрическая цепь, в которой происходит коммутация (рис. 5.1-5.20). В цепи действует постоянная Э.Д.С. Параметры цепи приведены в табл 4.1. Требуется определить закон изменения во времени тока после коммутации в одной из ветвей схемы или напряжения на каком-либо элементе или между заданными точками схемы. <br />Задачу следует решать двумя методами: классическим и операторным. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени на интервале t=0..3/|pmin|, где |pmin| - меньший по модулю корень характеристического уравнения. <br />Вариант 22<br /><b>Дано:</b><br /> Рисунок 5.2 <br />E=150 В; L=2 мГн; C=5 мкФ; R1=5 Ом; R2=10 Ом; R3=5 Ом; R4=5 Ом; <br />Найти i2(t)-?
Поисковые тэги: Операторный метод, Классический метод, MicroCap

Артикул №1085752
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  второго рода

(Добавлено: 16.03.2018)
Дана электрическая цепь второго порядка, в которой происходит коммутация (рис. 1-30). В цепи действует постоянная ЭДС Е. Рассчитать переходный процесс в цепи и определить закон изменения во времени тока в ветви с индуктивностью и напряжения на ёмкости (для всех вариантов), а также падение напряжения на резисторе R1, если на схеме ключ не связан с этим элементом, иначе – ток через резистор R3. Построить графики iL(t), uС(t), uR1(t) или iR3(t).
Задачу следует решать классическим методом. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = |5/pmin|, где pmin – меньший по модулю корень характеристического уравнения.
Вариант 18

Дана электрическая цепь второго порядка, в которой происходит коммутация (рис. 1-30). В цепи действует постоянная ЭДС Е. Рассчитать переходный процесс в цепи и определить закон изменения во времени тока в ветви с индуктивностью и напряжения на ёмкости (для всех вариантов), а также падение напряжения на резисторе R1, если на схеме ключ не связан с этим элементом, иначе – ток через резистор R3. Построить графики iL(t), uС(t), uR1(t) или iR3(t). <br />Задачу следует решать классическим методом. На основании полученного аналитического выражения требуется построить график изменения искомой величины в функции времени в интервале от t = 0 до t = |5/pmin|, где pmin – меньший по модулю корень характеристического уравнения.<br />Вариант 18
Поисковые тэги: Классический метод, MicroCap

Артикул №1085630
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Четырехполюсники

(Добавлено: 15.03.2018)
Исследование частотных характеристик электрической цепи (практическая работа)
Исследование частотных характеристик электрической цепи (практическая работа)
Поисковые тэги: MicroCap

    Категории
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях: