Артикул №1167122
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.06.2025)
1.53. Дано: R1 = 30 Ом, R3 = 60 Ом, R4 = 24 Ом, R5 = 20 Ом, E1 = 90 В, E2 = 54 В (рис. к задаче 1.53).
Определить токи I1 и I2, применив метод наложения.

<b>1.53.</b> Дано: R1 = 30 Ом, R3 = 60 Ом, R4 = 24 Ом, R5 = 20 Ом, E1 = 90 В, E2 = 54 В (рис. к задаче 1.53). <br />Определить токи I<sub>1</sub> и I<sub>2</sub>, применив метод наложения.
Поисковые тэги: MicroCap, Метод наложения

Артикул №1167121
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.06.2025)
1.21. Определить токи методом контурных токов и методом узловых потенциалов (рис. к задаче 1.21)
<b>1.21.</b> Определить токи методом контурных токов и методом узловых потенциалов (рис. к задаче 1.21)
Поисковые тэги: Метод контурных токов (МКТ), Метод узловых потенциалов (напряжений; МУП)

Артикул №1167120
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.06.2025)
1.9. Дано: R = 1 Ом, J = 3 А, I = 3 А (рис. к задаче 1.9).
Определить значение ЭДС Е и ток I1.

<b>1.9.</b> Дано: R = 1 Ом, J = 3 А, I = 3 А (рис. к задаче 1.9). <br />Определить значение ЭДС Е и ток I<sub>1</sub>.


Артикул №1167119
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.06.2025)
1.56. Дано: R1 = 1 Ом, R2 = 6 Ом, R3 = 2 Ом, E1 = 32 В, J = 18 А (рис. к задаче 1.56).
Определить токи методом эквивалентного генератора. Составить баланс активной мощности.

<b>1.56.</b> Дано: R1 = 1 Ом, R2 = 6 Ом, R3 = 2 Ом, E1 = 32 В, J = 18 А (рис. к задаче 1.56). <br />Определить токи методом эквивалентного генератора. Составить баланс активной мощности.
Поисковые тэги: Метод эквивалентного генератора (МЭГ), Баланс мощностей

Артикул №1167118
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Трехфазные цепи

(Добавлено: 30.06.2025)
4.38. Дано Uл = 380 В, R = 10 Ом, ωL0 = 30 Ом, ωL = 60 Ом, 1/ ωC = 20 Ом (рис. к задаче 4.38).
Определить токи. Построить векторную диаграмму токов.

<b>4.38.</b> Дано Uл = 380 В, R = 10 Ом, ωL<sub>0</sub> = 30 Ом, ωL = 60 Ом, 1/ ωC = 20 Ом (рис. к задаче 4.38). <br />Определить токи. Построить векторную диаграмму токов.
Поисковые тэги: Векторная (топографическая) диаграмма, Соединение "звезда", Схема с нулевым проводом

Артикул №1167117
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Трехфазные цепи

(Добавлено: 30.06.2025)
4.23. Мощность приемника изменяется двумя ваттметрами и 2400 Вт (рис. к задаче 4.23). Линейное напряжение Uл = 380 В, линейный ток Iл = 5 А.
Определить показания ваттметров.

<b>4.23.</b> Мощность приемника изменяется двумя ваттметрами и 2400 Вт (рис. к задаче 4.23). Линейное напряжение Uл = 380 В, линейный ток Iл = 5 А. <br />Определить показания ваттметров.


Артикул №1167116
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Трехфазные цепи

(Добавлено: 30.06.2025)
4.7. К вторичным обмоткам трехфазного трансформатора 35/10 кВ мощностью 1000 кВт подключен асинхронный двигатель номинальной мощностью 630 кВт. Вторичные обмотки трансформатора соединены треугольником (рис. к задаче 4.7). В номинальном режиме двигатель работает с cosφ=0.9.
Определить фазные токи трансформатора и линейные токи двигателя:
в номинальном режиме, при обрыве цепи вторичной обмотки ВС трансформатора.

<b>4.7.</b> К вторичным обмоткам трехфазного трансформатора 35/10 кВ мощностью 1000 кВт подключен асинхронный двигатель номинальной мощностью 630 кВт. Вторичные обмотки трансформатора соединены треугольником (рис. к задаче 4.7). В номинальном режиме двигатель работает с cosφ=0.9. <br />Определить фазные токи трансформатора и линейные токи двигателя: <br />в номинальном режиме, при обрыве цепи вторичной обмотки ВС трансформатора.


Артикул №1167115
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Нелинейные цепи

(Добавлено: 30.06.2025)
ЗАДАЧА 7.4 Переходные процессы в нелинейных цепях с источниками постоянного напряжения
1. Рассчитать и построить веберамперную характеристику ψ(i) нелинейной катушки по заданной кривой намагничивания В(H) сердечника (см. табл.7.5), его размерам и числу витков катушки.
2. Используя метод кусочно-линейной аппроксимации нелинейных характеристик с сопряжением временных интервалов, рассчитать переходный процесс, т.е. найти зависимость от времени тока i, потокосцепления ψ и напряжения uкат(t) на зажимах катушки; построить графики указанных величин.
3. Рассчитать и построить графики этих же величин, выполнив численное интегрирование методом Эйлера нелинейного дифференциального уравнения переходного процесса цепи. Сопоставить результаты расчётов переходного процесса, полученных двумя методами.
Схема 6 Данные 10
Дано
Сердечник катушки представляет собой тороид с сечением S = 25 см2, длиной средней линии l = 40 см; катушка имеет w = 150 витков и активное сопротивление Rкат = 1.5 Ом. Напряжение источника U = 90 В и параметры цепи R1 = 10 Ом. Кривая намагничивания сердечника приведена в табл. 7.1.

<b>ЗАДАЧА 7.4 Переходные процессы в нелинейных цепях с источниками постоянного напряжения</b> <br />1. Рассчитать и построить веберамперную характеристику ψ(i) нелинейной катушки по заданной кривой намагничивания В(H) сердечника (см. табл.7.5), его размерам и числу витков катушки. <br />2. Используя метод кусочно-линейной аппроксимации нелинейных характеристик с сопряжением временных интервалов, рассчитать переходный процесс, т.е. найти зависимость от времени тока i, потокосцепления ψ и напряжения uкат(t) на зажимах катушки; построить графики указанных величин. <br />3. Рассчитать и построить графики этих же величин, выполнив численное интегрирование методом Эйлера нелинейного дифференциального уравнения переходного процесса цепи. Сопоставить результаты расчётов переходного процесса, полученных двумя методами.<br /> <b>Схема 6 Данные 10</b><br />Дано <br />Сердечник катушки представляет собой тороид с сечением S = 25 см<sup>2</sup>, длиной средней линии l = 40 см; катушка имеет w = 150 витков и активное сопротивление Rкат = 1.5 Ом. Напряжение источника U = 90 В и параметры цепи R1 = 10 Ом. Кривая намагничивания сердечника приведена в табл. 7.1.
Поисковые тэги: Кусочно-линейная аппроксимация, Метод последовательных интервалов (метод Эйлера)

Артикул №1167114
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 30.06.2025)
ЗАДАЧА 7.3 Катушка с ферромагнитным сердечником
Вариант 10 Данные 6
I=3,2 А;
w=580;
l=0,64 м;
δ=2,0 мм=0,0028 м;
S=30 см2;
U=220 В;
I=3 А;
P=280 Вт;
Rs=14 Ом;

<b>ЗАДАЧА 7.3 Катушка с ферромагнитным сердечником</b><br /><b>Вариант 10 Данные 6</b><br />I=3,2 А; <br />w=580; <br />l=0,64 м; <br />δ=2,0 мм=0,0028 м; <br />S=30 см<sup>2</sup>; <br />U=220 В; <br />I=3 А; <br />P=280 Вт; <br />Rs=14 Ом;
Поисковые тэги: Векторная (топографическая) диаграмма

Артикул №1167113
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Нелинейные цепи

(Добавлено: 30.06.2025)
ЗАДАЧА 7.2 Установившиеся режимы в нелинейных цепях переменного тока
Проанализировать режим работы цепи:
1. Проверить, до какого значения тока справедлива предлагаемая аппроксимация веберамперной характеристики (помня о том, что магнитный поток катушки с ростом тока должен только возрастать).
2. Пользуясь методом гармонической линеаризации, найти амплитуду тока Im, при которой в цепи наступает резонанс напряжений. Если рассчитанная амплитуда окажется больше предельного тока для заданной аппроксимации, то рекомендуется изменить емкость конденсатора так, чтобы устранить это противоречие.
3. Для режима резонанса определить действующие значения напряжений на всех элементах цепи: резисторе, катушке, конденсаторе и источнике.
Проверить выполнение баланса активной мощности в цепи
Вариант 10 Данные 6
Дано
a=0,3 Вб/А;
b=0,05 Вб/А3
R=18 Ом;
C=40 мкФ;
ω=300 с^-1;

<b>ЗАДАЧА 7.2 Установившиеся режимы в нелинейных цепях переменного тока</b><br />Проанализировать режим работы цепи: <br />1. Проверить, до какого значения тока справедлива предлагаемая аппроксимация веберамперной характеристики (помня о том, что магнитный поток катушки с ростом тока должен только возрастать). <br />2. Пользуясь методом гармонической линеаризации, найти амплитуду тока Im, при которой в цепи наступает резонанс напряжений. Если рассчитанная амплитуда окажется больше предельного тока для заданной аппроксимации, то рекомендуется изменить емкость конденсатора так, чтобы устранить это противоречие. <br />3. Для режима резонанса определить действующие значения напряжений на всех элементах цепи: резисторе, катушке, конденсаторе и источнике. <br />Проверить выполнение баланса активной мощности в цепи <br /><b>Вариант 10 Данные 6</b><br />Дано <br />a=0,3 Вб/А; <br />b=0,05 Вб/А<sup>3</sup>  <br />R=18 Ом; <br />C=40 мкФ; <br />ω=300 с^<sup>-1</sup>;


Артикул №1167112
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Нелинейные цепи

(Добавлено: 30.06.2025)
ЗАДАЧА 7.1: Цепи с вентилями
1. Используя графоаналитический метод сложения характеристик, по вольтамперным характеристикам элементов построить вольтамперную характеристику каждой ветви, а затем входную характеристику всей цепи. Привести законы, по которым складываются характеристики. Графики характеристик построить в удобочитаемом масштабе. На входной кусочно-линейной характеристике указать координаты точек излома и угловые коэффициенты относительно оси тока.
2. Для каждого линейного участка входной характеристики изобразить заданную схему цепи, заменив диод замкнутым либо разомкнутым ключом, соответствующим состоянию диода на рассматриваемом участке.
3. Качественно построить кривую входного тока цепи при синусоидальном напряжении на входе, выбрав амплитуду напряжения превосходящей напряжения всех точек излома.
Схема 10 данные 6
Дано R1=2 Ом; R2=3 Ом; R3=3 Ом;
E1=6 В; E2=8 В;
Ветвь 1: R
Ветвь 2: R, диод включенный согласно (С), источник ЭДС включенный встречно (В)
Ветвь 3: R, диод включенный согласно (С), источник ЭДС включенный согласно (С)

<b>ЗАДАЧА 7.1: Цепи с вентилями</b><br />1. Используя графоаналитический метод сложения характеристик, по вольтамперным характеристикам элементов построить вольтамперную характеристику каждой ветви, а затем входную характеристику всей цепи. Привести законы, по которым складываются характеристики. Графики характеристик построить в удобочитаемом масштабе. На входной кусочно-линейной характеристике указать координаты точек излома и угловые коэффициенты относительно оси тока. <br />2. Для каждого линейного участка входной характеристики изобразить заданную схему цепи, заменив диод замкнутым либо разомкнутым ключом, соответствующим состоянию диода на рассматриваемом участке. <br />3. Качественно построить кривую входного тока цепи при синусоидальном напряжении на входе, выбрав амплитуду напряжения превосходящей напряжения всех точек излома. <br /><b>Схема 10 данные 6</b> <br />Дано R1=2 Ом; R2=3 Ом; R3=3 Ом; <br />E1=6 В; E2=8 В; <br />Ветвь 1: R <br />Ветвь 2: R, диод включенный согласно (С), источник ЭДС включенный встречно (В) <br />Ветвь 3: R, диод включенный согласно (С), источник ЭДС включенный согласно (С)


Артикул №1167111
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  второго рода

(Добавлено: 30.06.2025)
ЗАДАЧА 5.1 Классический метод анализа переходных процессов
В цепи (рис. 5.1) с параметрами (табл. 5.1) и источником постоянной ЭДС E=U требуется:
1. Для аналитического расчета переходного процесса
1.1. Составить систему дифференциальных уравнений (СЛДУ) в нормальной форме Коши, описывающих процессы в послекоммутационной схеме, относительно переменных состояния цепи.
1.2. Рассчитать переменные состояния, т.е. решить аналитически полученную систему уравнений динамики цепи.
1.3. Найти мгновенные значения остальных переменных цепи (токи и напряжения элементов, потокосцепления катушек, заряды конденсаторов), выразив их через переменные состояния (без производных и интегралов).
2. Записать СЛДУ цепи для численного интегрирование методом Эйлера. Выполнить процедуру на протяжении 10 – 15 шагов и полученные значения величин записать в соответствующую таблицу. Рекомендуется использовать ПК.
3. Построить графики переменных состояния цепи и всех токов цепи, приведя таблицу расчетных точек этих величин. На графики переменных состояния нанести кривые, подученные в результате численного интегрирования уравнений цепи. Оценить точность численного метода, указать характер, время переходного процесса, экстремальные значения функций, а в случае колебательного характера процесса – период и декремент колебаний.
Вариант 6 Схема 10
E=U=110 В;
L1=0,15 Гн; L2=0,25 Гн; R1=60 Ом; R2=220 Ом; M=0,14 Гн;

<b>ЗАДАЧА 5.1 Классический метод анализа переходных процессов</b><br /> В цепи (рис. 5.1) с параметрами (табл. 5.1) и источником постоянной ЭДС E=U требуется: <br />1. Для аналитического расчета переходного процесса <br />1.1. Составить систему дифференциальных уравнений (СЛДУ) в нормальной форме Коши, описывающих процессы в послекоммутационной схеме, относительно переменных состояния цепи. <br />1.2. Рассчитать переменные состояния, т.е. решить аналитически полученную систему уравнений динамики цепи. <br />1.3. Найти мгновенные значения остальных переменных цепи (токи и напряжения элементов, потокосцепления катушек, заряды конденсаторов), выразив их через переменные состояния (без производных и интегралов). <br />2. Записать СЛДУ цепи для численного интегрирование методом Эйлера. Выполнить процедуру на протяжении 10 – 15 шагов и полученные значения величин записать в соответствующую таблицу. Рекомендуется использовать ПК. <br />3. Построить графики переменных состояния цепи и всех токов цепи, приведя таблицу расчетных точек этих величин. На графики переменных состояния нанести кривые, подученные в результате численного интегрирования уравнений цепи. Оценить точность численного метода, указать характер, время переходного процесса, экстремальные значения функций, а в случае колебательного характера процесса – период и декремент колебаний.<br /><b>Вариант 6 Схема 10</b><br />E=U=110 В; <br />L1=0,15 Гн; L2=0,25 Гн; R1=60 Ом; R2=220 Ом; M=0,14 Гн;
Поисковые тэги: Классический метод, Метод переменных состояния

Артикул №1167110
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  первого рода

(Добавлено: 30.06.2025)
ЗАДАЧА 5.2 Операторный и качественный анализ переходных процессов
В момент времени t = 0 в цепи рис.5.2 происходит замыкание либо размыкание коммутационного устройства P. Значения параметров цепи даны в таблице 5.2, источники-постоянных напряжения и тока. Требуется:
1. Определить значения токов i1, i2 , i3 и напряжения uab между узлами a , b в моменты времени t = -0, t = +0 и t = ∞, используя законы Кирхгофа-Ома и правила коммутации. Результаты расчётов представить в виде табл. 5.3.
2. Используя операторный метод анализа, составить операторную схему замещения цепи, найти изображения переменных состояния по ней и рациональными способами перейти к оригиналам функций.
3. Используя метод качественного анализа (без составления уравнений динамики цепи):
3.1 Получить значения uC(+0), uC(∞), iL(+0) и iL(∞) , применив предельные теоремы операторного исчисления; сравнить их с ранее полученными.
3.2 Способом входного сопротивления цепи найти характеристическое число и постоянную времени цепи, практическое время переходного процесса.
4. На основе найденных величин построить зависимости указанных токов и напряжения от времени; объяснив полученные изменения рассматриваемых величин в переходном процессе.
Схема 10 данные 6
Дано E=120 В; J=12 А; R1=10 Ом; R2=12 Ом; R3=12 Ом;
L=60 мГн; C=40 мкФ;

<b>ЗАДАЧА 5.2 Операторный и качественный анализ переходных процессов</b> <br />В момент времени t = 0 в цепи рис.5.2 происходит замыкание либо размыкание коммутационного устройства P. Значения параметров цепи даны в таблице 5.2, источники-постоянных напряжения и тока. Требуется: <br />1. Определить значения токов i1, i2 , i3 и напряжения uab между узлами a , b в моменты времени t = -0, t = +0 и t = ∞, используя законы Кирхгофа-Ома и правила коммутации. Результаты расчётов представить в виде табл. 5.3. <br />2. Используя операторный метод анализа, составить операторную схему замещения цепи, найти изображения переменных состояния по ней и рациональными способами перейти к оригиналам функций. <br />3. Используя метод качественного анализа (без составления уравнений динамики цепи): <br />3.1 Получить значения uC(+0), uC(∞), iL(+0) и iL(∞) , применив предельные теоремы операторного исчисления; сравнить их с ранее полученными.  <br />3.2 Способом входного сопротивления цепи найти характеристическое число и постоянную времени цепи, практическое время переходного процесса. <br />4. На основе найденных величин построить зависимости указанных токов и напряжения от времени; объяснив полученные изменения рассматриваемых величин в переходном процессе.<br /> <b>Схема 10 данные 6</b><br />Дано E=120 В; J=12 А; R1=10 Ом; R2=12 Ом; R3=12 Ом; <br />L=60 мГн; C=40 мкФ;
Поисковые тэги: Операторный метод

Артикул №1167109
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы

(Добавлено: 30.06.2025)
Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 8 Схема 7

<b>Переходные процессы в линейных электрических цепях (Курсовая работа)</b><br />ЗАДАЧА 1.1 Классический метод анализа переходных процессов<br />ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов<br /><b> Данные 8 Схема 7</b>
Поисковые тэги: Операторный метод, Классический метод, Метод переменных состояния

Артикул №1167108
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы

(Добавлено: 30.06.2025)
Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 9 Схема 2

<b>Переходные процессы в линейных электрических цепях (Курсовая работа)</b><br />ЗАДАЧА 1.1 Классический метод анализа переходных процессов<br />ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов<br /><b> Данные 9 Схема 2</b>
Поисковые тэги: Операторный метод, Классический метод, Метод переменных состояния

Артикул №1167105
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 30.06.2025)
Лабораторная работа №4
Параллельное соединение индуктивности и емкости.
Резонанс токов

Цель работы: рассмотреть явления, происходящие в цепи переменного тока, содержащей параллельно соединенные катушку и конденсатор (рис. 4.1), ознакомиться с резонансом токов.

<b>Лабораторная работа №4 <br />Параллельное соединение индуктивности и емкости.  <br />Резонанс токов</b> <br />Цель работы: рассмотреть явления, происходящие в цепи переменного тока, содержащей параллельно соединенные катушку и конденсатор (рис. 4.1), ознакомиться с резонансом токов.
Поисковые тэги: Векторная (топографическая) диаграмма, Резонанс в контурах, Multisim

Артикул №1167104
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 30.06.2025)
Лабораторная работа №3 Цепь переменного синусоидального тока с последовательным соединением катушки и конденсатора. Резонанс напряжений
Цель работы: изучить явления, происходящие в неразветвленных цепях переменного синусоидального тока при изменении соотношений величин индуктивности и емкости; ознакомиться с явлением резонанса напряжений

<b>Лабораторная работа №3 Цепь переменного синусоидального тока с последовательным соединением катушки и конденсатора. Резонанс напряжений</b> <br />Цель работы: изучить явления, происходящие в неразветвленных цепях переменного синусоидального тока при изменении соотношений величин индуктивности и емкости; ознакомиться с явлением резонанса напряжений
Поисковые тэги: Векторная (топографическая) диаграмма, Резонанс в контурах, Multisim

Артикул №1167103
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 30.06.2025)
Работа 2. Проверка основных законов электрической цепи
Цель работы: экспериментально найти распределение токов и напряжений, а также сопротивления отдельных элементов и всей цепи при последовательном, параллельном и смешанном соединении потребителей; убедиться в справедливости закона Ома и законов Кирхгофа.

<b>Работа 2. Проверка основных законов электрической цепи  </b><br />Цель работы: экспериментально найти распределение токов и напряжений, а также сопротивления отдельных элементов и всей цепи при последовательном, параллельном и смешанном соединении потребителей; убедиться в справедливости закона Ома и законов Кирхгофа.
Поисковые тэги: Законы Кирхгофа, Multisim

Артикул №1167101
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 30.06.2025)
e(t)=120√2sin⁡(1000t-30°),В
Определить закон изменения i(t)-?

e(t)=120√2sin⁡(1000t-30°),В <br />Определить закон изменения i(t)-?
Поисковые тэги: Классический метод

Артикул №1167100
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  первого рода

(Добавлено: 30.06.2025)
Найти закон изменения i(t).
Найти закон изменения i(t).
Поисковые тэги: Классический метод

    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 200000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:


    Договор оферты