Артикул: 1132125

Раздел:Технические дисциплины (81427 шт.) >
  Математика (30917 шт.) >
  Численные методы и вычислительная математика (389 шт.)

Название или условие:
Лабораторная работа № 1
Решение типовых задач линейной алгебры в системе MATLAB
Вариант 3

Описание:
Пусть даны матрицы А и В в соответствии с табл. 1.
Средствами MATLAB определить сумму А+В, разность А-В, почленное произведение А и В, матричное произведение А В, сравнить эти два вида произведений.
Решить матричные уравнения АХ=В, ХА=В. Сравнить эти два решения.
Выполнить почленные деления А.\В и В./А. Сравнить полученные результаты.
Сформировать случайным образом полином 7 порядка с коэффициентами в пределах от -1 до +1 с равномерной плотностью распределения. Обозначим аргумент этого полинома х. Вычислить значения этого полинома при х=А и х=В в почленном и в матричном варианте.
Сравнить полученные результаты.
Вычислить определители, ранги, собственные значения, числа обусловленности, нормы четырёх видов, обратные матрицы всех полученных выше матричных значений.
Сформировать случайным образом симметричную матрицу размера (6,6) с элементами в пределах от -1 до +1 с равномерной плотностью распределения. Рассчитать собственные значения и число обусловленности этой матрицы. Убедиться, что собственные значения - действительные числа, а число обусловленности равно отношению максимума модуля собственных значений к минимуму модуля собственных значений.
Для всех полученных матричных значений убедиться, что определитель матрицы равен произведению всех собственных значений.
Каждый из полученных результатов присвоить отдельной переменной. Сохранить все переменные в mat-файл. Вывести их значения в командное окно, а также в текстовый файл, снабдив всю выдачу текстовыми сообщениями.
Решение данной задачи представить также в виде вычислительного сценария (m-файла).


Поисковые тэги: MatLab

Изображение предварительного просмотра:

Лабораторная работа № 1<br /> Решение типовых задач линейной алгебры в системе MATLAB<br /> <b>Вариант 3</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Численное интегрирование
Вычислить интеграл от многочлена P(x) в пределах от 1 до 2.2 с шагом h = 0.2, используя формулы:
а) центральных прямоугольников;
б) трапеций;
в) Симпсона.
Оценить погрешность результатов. Проверить справедливость оценок, сравнив полученные приближенные значения интеграла с точным значением, вычисленным по формуле Ньютона-Лейбница
Значение многочлена вычислять по схеме Горнера. Промежуточные вычисления вести с шестью значащими цифрами. Ответы записать с учетом погрешности
Вариант 10

Одномерная оптимизация
Методом золотого сечения найти с точностью ε=10-1 минимум функции. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом бисекции с точностью ε=10-3 и Ньютона с точностью ε = 10-4
Вариант 3

Задача Коши
Численно решить задачу Коши для обыкновенного дифференциального уравнения 1-го порядка на отрезке [a,b] с шагом h=0.2, h=0.4
а) методом Эйлера
б) исправленным методом Эйлера
в) методом Эйлера-Коши
Оценить погрешность по правилу Рунге. Найти точное решение задачи. Убедиться в правильности полученной оценки. Построить графики точного и приближенного решений
Вариант 10

Многомерная оптимизация
Методом Ньютона найти с точностью ε=10-4 минимум функции
Вариант 9

Решение систем линейных алгебраических уравнений
Решить систему линейных алгебраических уравнений
Ах=В
а) методом Гаусса с выбором главного элемента
б) методом простых итераций (с оценкой достаточного числа итераций)
в) методом Зайделя
Решение найти с точностью 10-3
В промежуточных вычислениях удерживать 4-5 знаков после запятой
Вариант 10

Численное интегрирование
Вычислить интеграл от многочлена P(x) в пределах от 1 до 2.2 с шагом h = 0.2, используя формулы:
а) центральных прямоугольников;
б) трапеций;
в) Симпсона.
Оценить погрешность результатов. Проверить справедливость оценок, сравнив полученные приближенные значения интеграла с точным значением, вычисленным по формуле Ньютона-Лейбница
Значение многочлена вычислять по схеме Горнера. Промежуточные вычисления вести с шестью значащими цифрами. Ответы записать с учетом погрешности
Вариант 5

Одномерная оптимизация
Методом золотого сечения найти с точностью ε=10-1 минимум функции. Выбрав полученное решение в качестве начального приближения, найти решение уравнения методом бисекции с точностью ε=10-3 и Ньютона с точностью ε = 10-4
Вариант 10

Метод наименьших квадратов
Применяя метод наименьших квадратов, приблизить функцию, заданную таблично, ее многочленами 1-ой и 2-ой степени. Для каждого приближения определить величину среднеквадратичной погрешности, построить график
Вариант 3

Многомерная оптимизация
Методом Ньютона найти с точностью ε=10-4 минимум функции
Вариант 1

Численное интегрирование
Вычислить интеграл от многочлена P(x) в пределах от 1 до 2.2 с шагом h = 0.2, используя формулы:
а) центральных прямоугольников;
б) трапеций;
в) Симпсона.
Оценить погрешность результатов. Проверить справедливость оценок, сравнив полученные приближенные значения интеграла с точным значением, вычисленным по формуле Ньютона-Лейбница
Значение многочлена вычислять по схеме Горнера. Промежуточные вычисления вести с шестью значащими цифрами. Ответы записать с учетом погрешности
Вариант 3