Артикул: 1118547

Раздел:Технические дисциплины (76249 шт.) >
  Математика (28934 шт.) >
  Математический анализ (19722 шт.) >
  Кратные и криволинейные интегралы (1387 шт.)

Название или условие:
Найти момент инерции полусферы z = √(a2 - x2 - y2) относительно оси Oz

Изображение предварительного просмотра:

Найти момент инерции полусферы  z = √(a<sup>2</sup> - x<sup>2</sup> - y<sup>2</sup>) относительно оси Oz

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5

Вычислить объем тела ограниченного сферой x2 + y2 + z2 = 4a2 и цилиндром x2+y2=a2 и расположенного вне цилиндра
Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
Вычислить криволинейный интеграл первого рода по указанной кривой L
Найти двойной интеграл, ограниченный треугольником с вершинами (1;1), (4;1), (4;4)
f(x,y)=x-y.
Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл: