Артикул: 1087426

Раздел:Технические дисциплины (60902 шт.) >
  Математика (24017 шт.) >
  Математический анализ (16687 шт.) >
  Кратные и криволинейные интегралы (1197 шт.)

Название или условие:
Вычислить площадь фигуры, ограниченной петлей кривой x3 + x2 - y2 = 0

Изображение предварительного просмотра:

Вычислить площадь фигуры, ограниченной петлей кривой x<sup>3</sup> + x<sup>2</sup> - y<sup>2</sup> = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить двойной интеграл, если область G – единичный круг с центром в начале координат. Интеграл:
Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
Вычислить криволинейный интеграл II рода , если L – отрезок прямой, соединяющей точки А и В.
L: A(0;0), B(3;6); y=3x

Изменить порядок интегрирования. Область интегрирования изобразить на чертеже
Найти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5

С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Вычислить криволинейный интеграл первого рода по указанной кривой L
Найти координаты центра масс дуги однородной кривой L
L={(x,y):x2/3+y2/3=a2/3,y≥0}