Артикул: 1087392

Раздел:Технические дисциплины (60902 шт.) >
  Математика (24017 шт.) >
  Математический анализ (16687 шт.) >
  Кратные и криволинейные интегралы (1197 шт.)

Название или условие:
Вычислить интеграл, где L - первый виток конической винтовой линии x = tcos(t), t = tsin(t), z = t, 0 ≤ t ≤ 2π

Изображение предварительного просмотра:

Вычислить интеграл, где L - первый виток конической винтовой линии x = tcos(t), t = tsin(t), z = t, 0 ≤ t ≤ 2π

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в слуычае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Изобразите область D, которая ограничена кривыми заданными в задании. Вычислите двойной интеграл по области D.
Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
Найти момент сопротивления кручению стержня круглого сечения радиуса RНайти координаты центра масс части однородного конуса:
x2+y2=R2/H2 z2, 0≤z≤H

Найти координаты центра масс дуги однородной кривой L
L={(x,y):x2/3+y2/3=a2/3,y≥0}

Вычислить, если А(0; -1), В(3; 3).
Вычислить интеграл, если область G является прямоугольником со сторонами, параллельными осям координат, причем 1 ≤ x ≤ 2, 2 ≤ y ≤ 3 . Интеграл:
С помощью тройного интеграла вычислить объем тела, ограниченного поверхностями: x2 + y2 = 2, x = √(y), z = 30y, x = 0, z = 0
Изменить порядок интегрирования. Область интегрирования изобразить на чертеже
Вычислить криволинейный интеграл первого рода по указанной кривой L