Артикул: 1052943

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Приложения определенного интеграла (830 шт.)

Название или условие:
Задача 2518 из сборника Демидовича.
Какую работу надо затратить, чтобы растянуть упругую пружину на 10 см, если сила в 1 кг растягивает этй пружину на 1 см?

Описание:
Подробное решение.

Поисковые тэги: Сборник Демидовича

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти объем тела ограниченного поверхностями: x=√y, x=3√y, y+z=4 , z=0
Найти площадь фигуры, ограниченной линиями: y = ln(x); y = 0, x = e (e ≈ 2,718)
Вычислить площадь криволинейной трапеции ограниченной функцией f(x)=√x, осью Ox и прямыми x=1 и x=4 Вычислить массу контура L : x2 + y2 = 4x если плотность в каждой его точке δ = x - y
Найти площадь фигуры с помощью двойного интеграла
D:y=12-x,y=4√x,x=0

Найти площадь фигуры ограниченной линиями: y=sin⁡(x), y=cos⁡(x), x=0
Найти длину дуги линии y = lnsin(x), π/3 ≤ x ≤ π/2
Вычислить площадь фигуры, ограниченной линиями
y = x2 + 3x, y = -x2 - 3x

Найти объем части однополостного гиперболоида, ограниченного плоскостями z = -H и z = H
Вычислить площадь фигуры, ограниченной графиками функций f(x) = x - 1 и g(x) = x2 - 4x + 3. Сделать чертеж