Артикул: 1034955

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название или условие:
Вычислить криволинейные интегралы: ∫LOA(x2 + y2) dx + 2 xydy, где LOA - дуга кубической параболы y = x3 от точки O(0;0) до точки A(1; 1).

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Вычислить криволинейные интегралы: ∫<sub>L<sub>OA</sub></sub>(x<sup>2</sup> + y<sup>2</sup>) dx + 2 xydy, где L<sub>OA</sub> - дуга кубической параболы y = x<sup>3</sup> от точки O(0;0) до точки A(1; 1).

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Вычислить криволинейный интеграл I рода, если L – отрезок прямой от точки А до точки В.
f(x;y)=x2y+2xy; A(0;0), B(3;6)

Вычислить криволинейный интеграл по контуру Г, пробегаемому в положительном направлении:
где Г - контур прямоугольника АВСD: А(-1; -1); В(-1; 2); С(3; 2); D(3; -1).

Задача 6. Изменить порядок интегрирования в двойном интеграле. Сделать чертёж области интегрирования.
Вариант 5

Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
Вычислить двойной интеграл, если область G – единичный круг с центром в начале координат. Интеграл:
Изобразите область D, которая ограничена кривыми заданными в задании. Вычислите двойной интеграл по области D.
Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл: