Артикул: 1034736

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название или условие:
Решить уравнение y' - y/x = (x - 1)2/y

Описание:
Подробное решение в WORD

Поисковые тэги: Уравнение Бернулли

Изображение предварительного просмотра:

Решить уравнение  y' - y/x = (x - 1)<sup>2</sup>/y

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить задачу Коши
Решить дифференциальное уравнение
Найти общие решения ДУ (дифференциальных уравнений)
Решить дифференциальное уравнение
Решить дифференциальное уравнение y''+4y=e-2x; y(0)=0; y'(0)=0
Решить дифференциальное уравнение
Операторным методом решить задачу Коши :
x''+12x'+180x=0 x(0)=0 ; x' (0)=5

Задача 1. Найти частное решение дифференциального уравнения первого порядка
Вариант 5

Найти общие решения ДУ (дифференциальных уравнений)
Найти общие решения дифференциальных уравнений