Артикул: 1034569

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название или условие:
Вычислить объём тела, ограниченного указанными поверхностями. Данное тело и область интегрирования изобразить на чертеже.
z=x2+(y2/4); y=1; x=1; y=-1; x+1=0

Описание:
Подробное решение

Изображение предварительного просмотра:

Вычислить объём тела, ограниченного указанными поверхностями. Данное тело и область интегрирования изобразить на чертеже.<br /> z=x<sup>2</sup>+(y<sup>2</sup>/4); y=1;  x=1;  y=-1;  x+1=0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти моменты инерции однородных дуг L плотности ρ
L={(x,y):x=acost, y=asint, 0≤t≤α }
а) Относительно оси OX
б) Относительно оси OY

Найти статический момент части цилиндра, x2+y2=2Ry, лежащей между плоскостями z=0 и z=c, относительно плоскости XZ, если плотность ρ=y+z
С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
Вычислите двойной интеграл перейдя к полярным координатам. Изобразите область интегрирования
Вычислить криволинейный интеграл II рода , если L – отрезок прямой, соединяющей точки А и В.
L: A(0;0), B(3;6); y=3x

Вычислить криволинейный интеграл I рода, если L – отрезок прямой от точки А до точки В.
f(x;y)=x2y+2xy; A(0;0), B(3;6)

Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.