Найти моменты инерции однородных дуг L плотности ρ L={(x,y):x=acost, y=asint, 0≤t≤α } а) Относительно оси OX б) Относительно оси OY
 | Вычислить данные криволинейные интегралы
 |
Вычислить криволинейный интеграл I рода, если L – отрезок прямой от точки А до точки В. f(x;y)=x2y+2xy; A(0;0), B(3;6)
 | Вычислить криволинейный интеграл ∫L(ydx+xdy)/(x2+y2), где L- отрезок прямой y=x от точки x=1 до x=2
 |
Вычислить криволинейный интеграл по контуру Г, пробегаемому в положительном направлении: где Г - контур прямоугольника АВСD: А(-1; -1); В(-1; 2); С(3; 2); D(3; -1).
 | Представить двойной интеграл ∬Df(x;y)dxdy в виде суммы двукратных интегралов: а) внешний интеграл по y; б) внешний интеграл по x. n=3
 |
Найти двойной интеграл, ограниченный треугольником с вершинами (1;1), (4;1), (4;4) f(x,y)=x-y. | Вычислить интеграл: ∬S xyzdS,где S-часть конуса z2=2xy, z≥0, лежащая внутри цилиндра x2+y2=a2
 |
Вычислить, если А(0; -1), В(3; 3).
 | Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
 |