Изобразите область D, которая ограничена кривыми заданными в задании. Вычислите двойной интеграл по области D.
 | Вычислить двойной интеграл, если область G ограничена эллипсом (x2 + 4) + (y2/9) = 1 и осями координат. Интеграл:
 |
Вычислить криволинейный интеграл первого рода по указанной кривой L
 | Вычислить криволинейный интеграл первого рода по указанной кривой L
 |
Вычислить двойной интеграл, если область G ограничена осями координат и прямой y= 1- x . Интеграл:
 | Вычислить двойной интеграл ∫∫D x/y·dx·dy , где D ограничена линиями y=ex, y=e2x, x=2.
 |
Найти моменты инерции однородных дуг L плотности ρ L={(x,y):x=acost, y=asint, 0≤t≤α } а) Относительно оси OX б) Относительно оси OY
 | Представить двойной интеграл ∬Df(x;y)dxdy в виде суммы двукратных интегралов: а) внешний интеграл по y; б) внешний интеграл по x. n=3
 |
Вычислить двойной интеграл ∬Df(x;y)dxdy в случаях: а) прямоугольной области, заданной неравенствами; б) произвольной области, ограниченной линиями. f(x, y)=5x – y
 | Найти площадь цилиндрической поверхности F(x,y)=0, ограниченной снизу поверхностью z=f1(x,y) и сверху – поверхностью z=f2(x,y), если: F(x,y)=y2-4/9·(x-1)3, f1=0, f2=2-√x
 |