Артикул: 1021825

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Дифференциальные уравнения (2399 шт.)

Название или условие:
Задача 1198 из сборника Филиппова
Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию. x ∂z/∂x - y ∂z/∂y = z2(x - 3y); x = 1, yz + 1 = 0.

Поисковые тэги: Сборник Филиппова

Изображение предварительного просмотра:

Задача 1198 из сборника Филиппова<br />Найти поверхность, удовлетворяющую данному уравнению и проходящую через данную линию. x ∂z/∂x - y ∂z/∂y = z<sup>2</sup>(x - 3y);  x = 1, yz + 1 = 0.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить дифференциальное уравнение
Операторным методом решить задачу Коши :
x''+12x'+180x=0 x(0)=0 ; x' (0)=5

Задача 4. Найти общее решение системы дифференциальных уравнений
Вариант 5

Задача 1. Найти частное решение дифференциального уравнения первого порядка
Вариант 5

Задача 3. Найти общее и частное решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами со специальной правой частью.
Вариант 5
y''-4·y'+3·y=e5·x

Найти частное решение уравнения:
(t+1)dx=2xdt
если t = 1 при x = 4

Найти общие решения ДУ (дифференциальных уравнений)
Найти общее решение
Решить дифференциальное уравнение
Задача 2. Найти общее решение дифференциального уравнения и частное решение, удовлетворяющее начальным условиям
Вариант 5