Артикул: 1014627

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Вариационное исчисление и функциональный анализ (120 шт.)

Название:Доказать, что оператор дифференцирования A d/dx:
а) не является вполне непрерывным при действии C(1)[0,1]→C[0,1] ;
б) является вполне непрерывным при действии C(2)[0,1]→C[0,1] .

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дана модель объекта управления, описываемая системой дифференциальных уравнений и граничными условиями x1(0) = 0, x2(0) = 3, x1(3) = 2, x2(3) = –1, где t – время (t ∈ [0; 3]), x(t) = (x1(t), x2(t))T – фазовый вектор (траектория объекта), u(t) – функция управления объектом.
Требуется найти оптимальное управление объектом u*(t) и соответствующую ему оптимальную траекторию x*(t) , если задан критерий качества управления

Найти экстремаль функционала
Найти вариацию функционала, если y(x) и δ(y(x)) ∈ C(1) [x0, x1]
Найти экстремаль функционала
Найти экстремаль функционала при заданных граничных условиях: y(1) = 0, y'(1) = 1, y(2) = y'(2) = 0
Найти экстремаль функционала, при граничных условиях: y(1) = 3 + √3, y(2) = 3
Решить задачу с помощью уравнения Эйлера и условий трансверсальности
Найти экстремаль функционала
Найти экстремали следующего функционала (рис) удовлетворяющие условиям: x(0) = 0, x(1) = shl, x(0) = 0, x(1) = e
Задача о брахистохроне
Среди всех линий, соединяющих точки А и В, найти ту, по которой материальная точка, двигаясь под действием силы тяжести из А без начальной скорости, достигнет точки В за кратчайшее время