Артикул: 1003301

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Векторный и тензорный анализ (130 шт.)

Название или условие:
Задача 412 из учебника Минорского.
Определить длины диагоналей параллелограмма, построенного на векторах a = 2m+n и b = m-2n, где m и n - единичные векторы, угол между которыми равен 60°

Поисковые тэги: Сборник Минорского

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти циркуляцию векторного поля a по замкнутому контуру Г, образованному при пересечении указанных поверхностей, двумя способами: непосредственно и по теореме Стокса.
Векторы a, b, c взаимно перпендикулярны и имеют общее начало Найти | a + b + c |, если | a | = 10, | b | = =11, | c | = 2.
Найти градиент функции r = √ (x - x0)2 + (y - y0)2 + (z - z0)2 (молуль радиус-ветора)
Вычислить символы Кристоффеля для:
а) круговых цилиндрических координат;
б) сферических координат.
Вычислить поток вектора f = 2xi - 3xyj + 4zk через часть поверхности 2x + 4y + 3z = 12, лежащую в первом октанте.
Найти наибольшую крутизну подъёма поверхности u = xy в точке Р (2,2,4).
Найти поток векторного поля a через полную поверхность пирамиды V, образованной плоскостями, двумя способами: непосредственно и по теореме Остроградского-Гаусса.
a = -xi + 5yj + 2zk, x + 4y - 3z = 1

Вычислить проекцию вектора a = {1; -2; 2} на ось вектора b = {2; 10; 11}.
Доказать, что поле a = x2i + y2j + z2k является потенциальным и найти его потенциал
Даны векторы
a = αm+βn и b = γm+δn, где |m| =k, |n| = l, (m,n) = φ.
Найти: а) (λa + μb)·(va + τb), б) ПРb(va + τb) , в) cos(a,τb).
α = -3, B =5, γ =1, δ = 7, k =4, l = 6, λ = -2, μ =3, v = 3, τ = -2, φ = (5π/3)