Артикул: 1000396

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория поля (97 шт.)

Название или условие:
Элементы теории поля

Описание:
Найти поток векторного поля a через часть плоскости Р, расположенную в первом октанте (нормаль образует острый угол с осью Oz)

Поисковые тэги: Теория поля

Изображение предварительного просмотра:

Элементы теории поля

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти поток векторного поля F = (2z - x)i + (x + 2z)j + 3zk через сторону треугольника S, вырезанного из плоскости x + 4y + z - 4 = 0 координатными плоскостями в том направлении нормали к плоскости, которая образует с осью Oz острый угол.Вычислить поток векторного поля через внешнюю поверхность пирамиды, образуемой плоскостью p: x+3y+z=3 и координатными плоскостями, двумя способами 1) используя определение потока, 2) по формуле Остроградского-Гаусса.
Найти производную скалярного поля U в точке А по направлению к точке В
U = y2 - 2xy + 3x2 - 3xz + 8, A(1,0,0), B(3,-1,1)

Найти векторные линии
Найти а) grad z в точке A(x,y), б) ее производную в направлении (AB): z=x2y+xy2 A(1,1) B(7,-7)
Тело вращается вокруг оси с постоянной угловой скоростью ω. Найти вихрь скорости в произвольной точке тела.
Найти поверхности уровня скалярного поля
υ = arctg(z/(√(x2 + y2)))

Найти дивергенцию и ротор векторного поля а, выяснить, является ли данное поле потенциальным или соленоидальным, если да, то найти соответственно его скалярный или векторный потенциал и сделать проверку потенциала
a = ex+y(zi + zj + k)

Найти дивергенцию векторного поля
Найти поток радиуса-вектора r = xi + yj + zk через замкнутую поверхность z = 1 - √(x2 + y2), z = 0 (0 ≤ z ≤ 1)