Артикул: 1000169

Раздел:Технические дисциплины (57837 шт.) >
  Гидравлика и пневматика (694 шт.)

Название или условие:
Скорость капли воды в воздухе

Описание:
Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воз¬духа η=1.2⋅10^(-5) Па⋅с

Поисковые тэги: Формула Стокса

Изображение предварительного просмотра:

Скорость капли воды в воздухе

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Рассчитать всасывающий трубопровод длиной 100 м, предназначенный для перекачки нефтепродукта в количестве 1500 т из резервуара в жд цистерны за время 1,5 ч.
Рассчитать всасывающий трубопровод длиной 100 м, предназначенный для перекачки нефтепродукта в количестве 1500 т из резервуара в жд цистерны за время 1,5 ч.
Определить расход масла (ν = 0,3 см2/с), вытекающего из сосуда А в сосуд Б, если напор Н = 5 м, длины и диаметры труб соответственно равны l1 и d1 , l2 и d2. Эквивалентная шероховатость труб ∆ = 0,1 мм. Построить напорную и пьезометрическую линии.
Задача 30. Насос подает керосин в трубопровод /рис. 24/. Размеры труб d1, l1, d2 = d3, l2 = l3, шероховатость Δ = 0,1 – 1,0 мм, коэффициент сопротивления вентиля ζ, высоты расположения выходных сечений H2, H3. Расход насоса Q. Определить:
1) расходы жидкости на участках II и III;
2) давление на выходе из насоса / в сечении 2-2/; при каких значениях диаметров d2 и d3 расходы на участках II и III будут равны?
Дано: d1 = 50 мм, l1 = 20 м; d2 = 40 мм, l2 = 35 м, ζ = 10, H2 = 2 м, H3 = 3 м, Q = 10 · 10-3 м3/с.

Задача 24
Два последовательно (рис.28,а) или параллельно (рис.28,б) соединенных центробежных насоса установлены близко один от другого, работают на один длинный трубопровод длиной l и диаметром d. Геометрический напор установки H в процессе работы остается неизменным.
Найти рабочую точку при работе насосов на трубопровод. Определить мощность каждого из насосов, если они перекачивают воду, температура которой 20°C . Эквивалентная шероховатость трубопроводов Δэ = 0,50мм . Так как насосы находятся близко один от другого, а трубопровод длинный, сопротивлением всасывающих и соединяющих насосы трубопроводов можно пренебречь.
Характеристики указанных в таблице вариантов насосов приведены в приложении.

Потери напора по длине (ответ на теоретический вопрос по гидравлике - 1 страница)
Задача 33. В замкнутой системе /рис. 25/ создается циркуляция жидкости Ж в количестве Q с помощью насосов 1 и 2 по двум одинаковым трубопроводам длиной l и диаметром d. Определить напор каждого насоса, если вакуумметрическое давление в баке A равно P, разность уровней жидкости в баках h, коэффициент сопротивления по длине λ = 0,025.
При каком вакууме Pv в баке A насосы будут создавать одинаковые напоры?
Дано: Ж – автол, Q = 28 · 10-3 м3/с, d=150 мм ,l = 30 м, Pвак = 80 кПа, h = 12 м.

Задача 3 Имеются два резервуара A и B /рис.2/. В резервуаре находится жидкость ЖА, в резервуаре B – воздух. Определить давление PB в резервуаре B, если дано давление воздуха в резервуаре A – PA, показания дифференциального двухколенного манометра h1 и h2, положение уровня жидкости в резервуаре A относительно уровня рабочей жидкости в левом колене. В дифманометре используется жидкость Жм.
Дано: PA = -0,2 ×10 -2 кПа; ЖА – вода; h = 4 м; ЖМ – ртуть; h1 = 100 мм.рт.ст.; h2 = 150 мм.рт.ст.

Задача 23
Центробежный насос, характеристика которого задана в условии (табл.3), работает в системе, перекачивая воду, температура которой T = 40°C, из закрытого резервуара A в открытый резервуар Б. Стальные трубы всасывания и нагнетания соответственно имеют диаметр dв и dн, длину lв и lн, а их эквивалентная шероховатость Δэ = 0,1мм. Перепад горизонтов в резервуарах равен Hz, а избыточное давление в резервуаре А равно p0 .
Найти рабочую точку при работе насоса в установке (определить напор, подачу и мощность на валу насоса).
При построении характеристики насосной установки местные гидравлические сопротивления учесть в круглых поворотах и при входе нагнетательного трубопровода в резервуар.

Автоклав объёмом V наполнен водой и закрыт герметично. Определить повышение давление в нём Δp при увеличении температуры воды на Δt, если коэффициент температурного расширения βt=0.00018°C-1, а коэффициент сжимаемости βp=0.42×10-9 Па-1. Изменением объёма автоклава пренебречь.
Дано : V=1.7 м3 ; Δt=54°C