Артикул: 1137525

Раздел:Технические дисциплины (84529 шт.) >
  Математика (32145 шт.) >
  Численные методы и вычислительная математика (413 шт.)

Название:Вычисление определенных интегралов с помощью метода прямоугольников (курсовая работа)

Описание:
Введение
1. Математическая модель
1.1 Определение интеграла и его геометрический смысл
1.2 Геометрический смысл
1.3 Приближённые методы вычислени
2. Исследование модели
2.1 Программа для вычисления интеграла
2.2 Разработка графического приложения средствами MatLab.
Заключение
Список литературы

Пояснительная записка (26 страниц)+ исходники MatLab

Изображение предварительного просмотра:

Вычисление определенных интегралов с помощью метода прямоугольников (курсовая работа)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти разность √4,05 - √4 с тремя верными знакамиВариант 10
Вычислить интеграл, используя квадратурные формулы:
а) использование оператора интегрирования;
б) центральных прямоугольников с шагом h = 0,4 ; дать априорную оценку погрешности;
в) трапеций с шагами h = 0,4 и h = 0,2;
г) Симпсона с шагом h = 0,4 .

Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности и = 0,259 + 45,12 + 1,0012.Найти относительную и абсолютную погрешности приближенных чисел: а) 3,142, б) 2,997925·108 .
Решение уравнений в MatLab
Задача 4.1 Решение нелинейного уравнения.
- Создать Mat-функцию для функции f1(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести y(x)=f1(x) в виде XY графика. По нему определить приближенно корниуравнения у(х)=0. Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero.
- Сформировать строку с результатами и вывести ее в заголовок окна графика.
Задача 4.2 Решение системы из двух нелинейных уравнений.
- Создать Mat-функции для функций f2(x) и f3(x) = f1 (x) - f2(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести f1(x) и f2(x) в виде XY графиков. По нему определить приближенно корни системы уравнений, как координаты точек пересечения графиков f1(x) и f2(x). Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero к переменной f3(x).
- Сформировать строку с результатами и вывести ее в заголовок окна графика.

Приближенно вычислить с помощью формулы Симпсона интеграл для: 1) 2n = 2, 2) 2n = 4, 3)2n = 8 . Точность вычислений 0,001 .
Символьные вычисления в MatLab
Задача 5.1 Развертка/свертка.
- Ввести выражение f1 (x) и развернуть его.
- Полученное выражение свернуть. Сравнить результат c fl(x).
Задача 2. Дифференцировать/интегрировать.
- Ввести выражение f1 (x) и найти производную по х.
- Для полученного выражения найти неопределенный интеграл. Сравнить с f1(x).
Задача 3. Разложить в ряд Тейлора.
- Ввести выражение f2(x) и найти его разложение в ряд Тейлора.
- Построить XY график для f2(x) и его разложения в ряд Тейлора F2(x).
Задача 4. Работа с командой funtool.
- Задать функцию f1 и выполнить с ней операции задачи 2.
- Задать функцию f2 и выполнить с ней операцию символьного дифференцирования

Выполните отделение корней. Построить графики функций 3x4-8x3-18x2+2=0
(вариант 10)

Три одинаковых шарика связаны одинаковыми невесомыми пружинами и подвешены на нити (за шарики). Нить пережигают. Найдите ускорения шариков в момент пережигания нити (а также во все последующие моменты времени) )Использование LU/LUP-разложения
Найти обратную матрицу с помощью метода LU-разложения