Артикул: 1136567

Раздел:Технические дисциплины (83877 шт.) >
  Математика (31822 шт.) >
  Математический анализ (20679 шт.) >
  Дифференциальные уравнения (3196 шт.)

Название:Найти решение уравнения y' = 32x - 3y

Изображение предварительного просмотра:

Найти решение уравнения y' = 3<sup>2x - 3y</sup>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить уравнение y' - y = xex
Найти общее решение дифференциального уравнения
2xyy' = x2 + y2

Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти решение дифференциального уравнения y'=sin(x)+x.
Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найдите решение системы дифференциальных уравнений
Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0