Артикул: 1136087

Раздел:Технические дисциплины (83428 шт.) >
  Математика (31596 шт.) >
  Математический анализ (20544 шт.) >
  Дифференциальные уравнения (3183 шт.)

Название:Решить дифференциальное уравнение первого порядка ydy - xydx=0

Изображение предварительного просмотра:

Решить дифференциальное уравнение первого порядка ydy - xydx=0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить систему дифференциальных уравнений
Найдите решение системы дифференциальных уравнений
Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Решить дифференциальное уравнение (√x + 1)·y' = 2
Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям
y'' - 2y' = 2e2x, y(0) = 0, y'(0) = 2

Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Найти решение дифференциального уравнения (x + 1)dy=ydx