Артикул: 1135486

Раздел:Технические дисциплины (82948 шт.) >
  Математика (31398 шт.) >
  Дискретная математика (632 шт.) >
  Комбинаторика (340 шт.)

Название или условие:
Сколькими способами можно выбрать две книги из трех и расположить их в ряд на полке

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В группе переводчиков, каждый из которых знает один или несколько иностранных языков, 24 владеют японским, 24 — малайским, 24 — персидским. Докажите, что можно выделить подгруппу, в которой ровно 12 человек владели бы японским, ровно 12 — малайским и ровно 12 — персидским Вычислить C2n
Мартышка поднимается на один из 100 этажей небоскрёба и бросает вниз кокос. Она пытается выяснить, с какого наименьшего этажа нужно бросить кокос, чтобы тот разбился. Каково минимальное число попыток, достаточное для этого, если у мартышки всего два кокоса? Из шести источников в микросхему постоянно поступают сигналы трёх типов: из двух – первого типа, из трёх – второго и из одного – третьего. Микросхема выбирает последовательно 4 входных сигнала и выдает эту последовательность в виде выходного сигнала. Сколько вариантов выходных сигналов существует?
Порядок выступления 9 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?На тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?
Существует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита. Комментарий. Словом мы называем любую последовательность букв русского алфавита, не обязательно осмысленную, подсловом называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова. Каждый из 17 ученых переписывается с остальными. В их переписке речь идет лишь о трех темах. Каждая пара ученых переписывается друг с другом лишь по одной теме. Докажите, что не менее трех ученых переписываются друг с другом по одной и той же теме.
Сколькими способами можно на полке расставить 4 книги?Студенту необходимо сдать четыре экзамена в течение семи дней. Сколькими способами можно составив расписание экзаменов, если учитывать, что в один день он может сдавать только один экзамен?