Артикул: 1132124

Раздел:Технические дисциплины (81426 шт.) >
  Математика (30916 шт.) >
  Численные методы и вычислительная математика (388 шт.)

Название:Контрольное задание № 2
Исследование методов численного интегрирования таблично заданной функции

Вариант 3

Описание:
Дана аналитически заданная функция одной переменной (для каждого варианта своя, см. табл. 1).
По условию задачи требуется:
1. В системе MATLAB задать эту функцию таблично на отрезке [a, b] на равномерной сетке, состоящей из 21 узлов в виде двух одномерных массивов: массива значений аргумента и массива значений функции.
2. Функцией ezplot построить график этой функции в фигуре № 1.
3. Аналитически рассчитать первообразную функции в узлах сетки, равную нулю при х = а.
4. Нанести рассчитанные точки на график в фигуре № 2.
5. Рассчитать первообразную в узлах методом трапеций.
6. Добавить полученные точки на график другим цветом.
7. Определить оценку относительной погрешности метода трапеций как отношение нормы разности массивов численных и аналитических значений к норме массива аналитических значений первообразной.
8. Рассчитать первообразную в узлах сетки методом кусочно-квадратичной интерполяции с непрерывной первой производной. Нанести другим цветом полученные точки на график.
9. Определить оценку относительной погрешности метода кусочно-квадратичной интерполяции с непрерывной первой производной как в п. 7.
10. Рассчитать первообразную в узлах сетки и в средних точках между ними методом кусочно-кубической интерполяции с непрерывной первой производной (функция pchip в системе MATLAB). Нанести другим цветом полученные точки на график.
11. Определить оценку относительной погрешности метода кусочно-кубической интерполяции с непрерывной первой производной как в п. 7.
12. Рассчитать первообразную в узлах сетки и в средних точках между ними методом кусочно-кубической интерполяции с непрерывной второй производной (функция spline в системе MATLAB). Нанести другим цветом полученные точки на график.
13. Определить оценку относительной погрешности метода кусочно-кубической интерполяции с непрерывной второй производной как в п. 7.
14. Сравнить точность результатов, полученных разными методами.

Подробное решение в WORD (11 страниц)+исходники MatLab




Поисковые тэги: MatLab

Изображение предварительного просмотра:

<b>Контрольное задание № 2<br /> Исследование методов численного интегрирования таблично заданной функции</b><br /> <b>Вариант 3</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Символьные вычисления в MatLab
Задача 5.1 Развертка/свертка.
- Ввести выражение f1 (x) и развернуть его.
- Полученное выражение свернуть. Сравнить результат c fl(x).
Задача 2. Дифференцировать/интегрировать.
- Ввести выражение f1 (x) и найти производную по х.
- Для полученного выражения найти неопределенный интеграл. Сравнить с f1(x).
Задача 3. Разложить в ряд Тейлора.
- Ввести выражение f2(x) и найти его разложение в ряд Тейлора.
- Построить XY график для f2(x) и его разложения в ряд Тейлора F2(x).
Задача 4. Работа с командой funtool.
- Задать функцию f1 и выполнить с ней операции задачи 2.
- Задать функцию f2 и выполнить с ней операцию символьного дифференцирования

Выполните численное интегрирование для приведенных ниже интегралов (вариант 10)
Вычисление определенных интегралов с помощью метода прямоугольников (курсовая работа)
Найти разность √4,05 - √4 с тремя верными знаками
Пусть длина бруска измерена сантиметровой линейкой и получено приближенное значение ap = 251 см. Найти предельную относительную погрешность δaПоследовательная проверка статистических гипотез о среднем нормального распределения (курсовая работа)
Основы MatLab
Выполнить в режиме калькулятора следующие действия:
- Ввод исходных операндов.
- Выполнить над операндами 1 и 2 операцию 1.
- Выполнить над результатом и операндом 1 операцию 2.
- Выполнить над результатом и операндом 2 операцию 3.
- Возвести почленно операнд 1 в степень 3.

Экспериментально получены пять значений функции y = f(x) при пяти значениях аргумента x , которые представлены в таблице.
Методом наименьших квадратов найти функцию y = ax + b, описывающую приближенно (аппроксимирующую) экспериментальные данные. Сделать чертеж, на котором в декартовой системе координат построить экспериментальные точки Mi(xi, yi) и график аппроксимирующей функции .

Проведите интерполяцию функции sin(2x)·(cos2x) [0;π/2]
(вариант 10)

С помощью полного дифференциала функции двух переменных вычислить приближенно значение выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.