Артикул: 1125668

Раздел:Технические дисциплины (80048 шт.) >
  Математика (30680 шт.) >
  Математический анализ (20449 шт.) >
  Дифференциальные уравнения (3177 шт.)

Название:Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)

Изображение предварительного просмотра:

Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Записать характеристическое уравнение, соответствующего однородного уравнения, если неоднородное дифференциальное уравнение y'''-5y''+6y=17-x
Найти решение системы линейных дифференциальных уравнений методом исключения.
Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти решение дифференциального уравнения y''+y'-6y=0
Решить дифференциальное уравнение
(x+y)dx+(y-x)dy=0

Найти решение уравнения y' = 32x - 3y
Решить уравнение y' - y = xex
Найти решение дифференциального уравнения y'=sin(x)+x.
Решить дифференциальное уравнение 4x2y'=4x2+y2
Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.