Артикул: 1119556

Раздел:Технические дисциплины (77504 шт.) >
  Математика (29880 шт.) >
  Математический анализ (20276 шт.) >
  Дифференциальные уравнения (3167 шт.)

Название:Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Изображение предварительного просмотра:

Найти общее решение дифференциального уравнения <br /> y'' + 4y' + 4y = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить дифференциальное уравнение (√x + 1)·y' = 2
Найти решение системы линейных дифференциальных уравнений методом исключения.
Найти решение дифференциального уравнения y'=sin(x)+x.
Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям
y'' - 2y' = 2e2x, y(0) = 0, y'(0) = 2

Найти решение дифференциального уравнения y''' = 1/x
Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найдите решение системы дифференциальных уравнений