Артикул: 1119546

Раздел:Технические дисциплины (77504 шт.) >
  Математика (29880 шт.) >
  Математический анализ (20276 шт.) >
  Дифференциальные уравнения (3167 шт.)

Название:Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Изображение предварительного просмотра:

Найти общее решение уравнения <br /> x<sup>2</sup>y'' + 4xy' + 12y = ln(x)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить дифференциальное уравнение первого порядка ydy - xydx=0
Найти решение дифференциального уравнения y''' = 1/x
Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Найти частные решения, удовлетворяющие начальным условиям:
−3y′′+9y′−6y=−4ex; y(0)=y′(0)=−4

Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти частные решения, удовлетворяющие начальным условиям:
2y′′−18y′+28y=2x2+2x+6; y(0)=y′(0)=−4.

Найдите решение системы дифференциальных уравнений
Решить дифференциальное уравнение (√x + 1)·y' = 2