Артикул: 1119537

Раздел:Технические дисциплины (77504 шт.) >
  Математика (29880 шт.) >
  Математический анализ (20276 шт.) >
  Дифференциальные уравнения (3167 шт.)

Название:Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Изображение предварительного просмотра:

Найти общее решение уравнения <br /> y'' - 2y' = x<sup>3</sup> + 2x - 1

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти решение линейного дифференциального уравнения второго порядка:
y''+10y'+25y=2x3+5

Найти частное решение дифференциального уравнения с начальными условиями:
−3y''′+18y'=0; y(0)=−3; y'(0)=2.

Найти решение дифференциального уравнения y''+y'-6y=0
Найти частное решение дифференциального уравнения с начальными условиями.
y′′−2y′+y=0; y(0)= y′(0)=7.

Решить дифференциальное уравнение y' = √(2x + 3y)
Решить дифференциальное уравнение (√x + 1)·y' = 2
Решить дифференциальное уравнение
y'' + 9y = 6e3x
Найти общее решение линейного дифференциального уравнения первого порядка методом Бернулли и методом Лагранжа. y'+ytg(x)=cos⁡(x)
Решить дифференциальное уравнение 4x2y'=4x2+y2
Найти частное решение дифференциального уравнения второго порядка, удовлетворяющее указанным начальным условиям
y'' - 2y' = 2e2x, y(0) = 0, y'(0) = 2