Артикул: 1118925

Раздел:Технические дисциплины (77016 шт.) >
  Математика (29653 шт.) >
  Численные методы и вычислительная математика (377 шт.)

Название:Найти наилучшее приближение функции f(x) = sin(πx/2) в интервале 0 ≤ x ≤ 1 многочленом третьей степени

Изображение предварительного просмотра:

Найти наилучшее приближение функции f(x) = sin(πx/2) в интервале  0 ≤ x ≤ 1  многочленом третьей степени

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Три одинаковых шарика связаны одинаковыми невесомыми пружинами и подвешены на нити (за шарики). Нить пережигают. Найдите ускорения шариков в момент пережигания нити (а также во все последующие моменты времени) )Символьные вычисления в MatLab
Задача 5.1 Развертка/свертка.
- Ввести выражение f1 (x) и развернуть его.
- Полученное выражение свернуть. Сравнить результат c fl(x).
Задача 2. Дифференцировать/интегрировать.
- Ввести выражение f1 (x) и найти производную по х.
- Для полученного выражения найти неопределенный интеграл. Сравнить с f1(x).
Задача 3. Разложить в ряд Тейлора.
- Ввести выражение f2(x) и найти его разложение в ряд Тейлора.
- Построить XY график для f2(x) и его разложения в ряд Тейлора F2(x).
Задача 4. Работа с командой funtool.
- Задать функцию f1 и выполнить с ней операции задачи 2.
- Задать функцию f2 и выполнить с ней операцию символьного дифференцирования

Экспериментально получены пять значений функции y = f(x) при пяти значениях аргумента x , которые представлены в таблице.
Методом наименьших квадратов найти функцию y = ax + b, описывающую приближенно (аппроксимирующую) экспериментальные данные. Сделать чертеж, на котором в декартовой системе координат построить экспериментальные точки Mi(xi, yi) и график аппроксимирующей функции .

Найти разность u = x - y с тремя верными знаками, если х =12,1254 ± 0,0001, у =12,128 ± 0,001.
Вычислить частное приближенных чисел x =12,45 и y = 2,13 и число верных значащих цифр в нем, если все написанные цифры сомножителей – верные в узком смысле.Решение уравнений в MatLab
Задача 4.1 Решение нелинейного уравнения.
- Создать Mat-функцию для функции f1(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести y(x)=f1(x) в виде XY графика. По нему определить приближенно корниуравнения у(х)=0. Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero.
- Сформировать строку с результатами и вывести ее в заголовок окна графика.
Задача 4.2 Решение системы из двух нелинейных уравнений.
- Создать Mat-функции для функций f2(x) и f3(x) = f1 (x) - f2(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести f1(x) и f2(x) в виде XY графиков. По нему определить приближенно корни системы уравнений, как координаты точек пересечения графиков f1(x) и f2(x). Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero к переменной f3(x).
- Сформировать строку с результатами и вывести ее в заголовок окна графика.

Вариант 10
Вычислить интеграл, используя квадратурные формулы:
а) использование оператора интегрирования;
б) центральных прямоугольников с шагом h = 0,4 ; дать априорную оценку погрешности;
в) трапеций с шагами h = 0,4 и h = 0,2;
г) Симпсона с шагом h = 0,4 .

Последовательная проверка статистических гипотез о среднем нормального распределения (курсовая работа)
С помощью графического метода найти интервал (a,b), на котором находится действительный корень x* уравнения x3 + x - 6 = 0 Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001.
Найдите решения систем уравнений с использованием функций MATLAB, сравните полученные результаты между собой
(вариант 10)