Артикул: 1118919

Раздел:Технические дисциплины (77016 шт.) >
  Математика (29653 шт.) >
  Численные методы и вычислительная математика (377 шт.)

Название:Стационарное распределение температуры в теплоизолированном тонком стержне описывается линейной функцией u = a0 + a1x . Определить постоянные a0 и a1, если дана таблица измеренных температур в соответствующих точках стержня:

Изображение предварительного просмотра:

Стационарное распределение температуры в теплоизолированном тонком стержне описывается линейной функцией u = a<sub>0</sub>  + a<sub>1x </sub>. Определить постоянные a<sub>0</sub> и a<sub>1</sub>, если дана таблица измеренных температур в соответствующих точках стержня:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Выполните отделение корней. Построить графики функций 3x4-8x3-18x2+2=0
(вариант 10)

Найти относительную и абсолютную погрешности приближенных чисел: а) 3,142, б) 2,997925·108 .
Основы MatLab
Выполнить в режиме калькулятора следующие действия:
- Ввод исходных операндов.
- Выполнить над операндами 1 и 2 операцию 1.
- Выполнить над результатом и операндом 1 операцию 2.
- Выполнить над результатом и операндом 2 операцию 3.
- Возвести почленно операнд 1 в степень 3.

Символьные вычисления в MatLab
Задача 5.1 Развертка/свертка.
- Ввести выражение f1 (x) и развернуть его.
- Полученное выражение свернуть. Сравнить результат c fl(x).
Задача 2. Дифференцировать/интегрировать.
- Ввести выражение f1 (x) и найти производную по х.
- Для полученного выражения найти неопределенный интеграл. Сравнить с f1(x).
Задача 3. Разложить в ряд Тейлора.
- Ввести выражение f2(x) и найти его разложение в ряд Тейлора.
- Построить XY график для f2(x) и его разложения в ряд Тейлора F2(x).
Задача 4. Работа с командой funtool.
- Задать функцию f1 и выполнить с ней операции задачи 2.
- Задать функцию f2 и выполнить с ней операцию символьного дифференцирования

Найдите собственные значения и собственные векторы. Приведите графическое представление для собственных векторов с использованием функции Matlab stem.
(вариант 10)

Простые вычисления в MatLab
Задача 2.1 - Ввести текст в виде комментария, как заглавие программы.
- Ввести исходные данные.
- Задать изменение аргумента.
- Вычислить значения функций 1 и 2 для аргумента в заданном интервале.
- Вывести графики функций одновременно на одном графике в декартовых координатах. Для разных графиков использовать разный тип линий.
Задача 2.2
- Пункты 1...4 задачи 2.1.
- Вывести графики функций в двух подокнах на одном графике. Графики сделать в столбиковом формате.

Найти разность u = x - y с тремя верными знаками, если х =12,1254 ± 0,0001, у =12,128 ± 0,001.Вычислить функцию u = 2sin( 3x + 4y), если x = (π/24) ± 0,002 и y = (π/24) ± 0,005 . Найти предельные абсолютную и относительную погрешности результата и определить число верных значащих цифр.
Приближенно вычислить с помощью формулы Симпсона интеграл для: 1) 2n = 2, 2) 2n = 4, 3)2n = 8 . Точность вычислений 0,001 .
Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности и = 0,259 + 45,12 + 1,0012.