Артикул: 1118908

Раздел:Технические дисциплины (77016 шт.) >
  Математика (29653 шт.) >
  Численные методы и вычислительная математика (377 шт.)

Название:Используя метод Эйлера, найти значения функции y, определяемой дифференциальным уравнением y' = (y - x)/(y + x), при начальном условии y(0) = 1; шаг h = 0,1. Ограничиться отыскиванием первых четырех значений y.

Изображение предварительного просмотра:

Используя метод Эйлера, найти значения функции y, определяемой дифференциальным уравнением y' = (y - x)/(y + x), при начальном условии y(0) = 1; шаг h = 0,1. Ограничиться отыскиванием первых четырех значений y.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности и = 0,259 + 45,12 + 1,0012.Приближенно вычислить с помощью формулы Симпсона интеграл для: 1) 2n = 2, 2) 2n = 4, 3)2n = 8 . Точность вычислений 0,001 .
С помощью графического метода найти интервал (a,b), на котором находится действительный корень x* уравнения x3 + x - 6 = 0 Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001.
Многомерные вычисления в MatLab
Задача 3.1 Двумерная функция и объемные графики в своих окнах.
- Ввести исходные данные.
- Вычислить двумерную функцию.
- Вывести функцию в виде 5 трехмерных графиков разного типа.
- Вывести функцию в виде 2 контурных графиков разного типа.
Задача 3.2 Двумерная функция и объемные графики в подокнах общего окна.

Вариант 10
Вычислить интеграл, используя квадратурные формулы:
а) использование оператора интегрирования;
б) центральных прямоугольников с шагом h = 0,4 ; дать априорную оценку погрешности;
в) трапеций с шагами h = 0,4 и h = 0,2;
г) Симпсона с шагом h = 0,4 .

Решение уравнений в MatLab
Задача 4.1 Решение нелинейного уравнения.
- Создать Mat-функцию для функции f1(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести y(x)=f1(x) в виде XY графика. По нему определить приближенно корниуравнения у(х)=0. Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero.
- Сформировать строку с результатами и вывести ее в заголовок окна графика.
Задача 4.2 Решение системы из двух нелинейных уравнений.
- Создать Mat-функции для функций f2(x) и f3(x) = f1 (x) - f2(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести f1(x) и f2(x) в виде XY графиков. По нему определить приближенно корни системы уравнений, как координаты точек пересечения графиков f1(x) и f2(x). Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero к переменной f3(x).
- Сформировать строку с результатами и вывести ее в заголовок окна графика.

С помощью полного дифференциала функции двух переменных вычислить приближенно значение выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.
Вычисление определенных интегралов с помощью метода прямоугольников (курсовая работа)
Выполните численное интегрирование для приведенных ниже интегралов (вариант 10)
Найдите решения систем уравнений с использованием функций MATLAB, сравните полученные результаты между собой
(вариант 10)