Артикул: 1118899

Раздел:Технические дисциплины (77016 шт.) >
  Математика (29653 шт.) >
  Численные методы и вычислительная математика (377 шт.)

Название:Вычислить по формуле прямоугольников интеграл, разбив интервал интегрирования на 10 частей. Оценить погрешность

Изображение предварительного просмотра:

Вычислить по формуле прямоугольников интеграл, разбив интервал интегрирования на 10 частей. Оценить погрешность

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить функцию u = 2sin( 3x + 4y), если x = (π/24) ± 0,002 и y = (π/24) ± 0,005 . Найти предельные абсолютную и относительную погрешности результата и определить число верных значащих цифр.Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности и = 0,259 + 45,12 + 1,0012.
Использование LU/LUP-разложения
Найти обратную матрицу с помощью метода LU-разложения

Найти разность √4,05 - √4 с тремя верными знаками
Лабораторная работа 5. СИМВОЛЬНЫЕ ВЫЧИСЛЕНИЯ (MathCad)
Вариант 8

Решение уравнений в MatLab
Задача 4.1 Решение нелинейного уравнения.
- Создать Mat-функцию для функции f1(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести y(x)=f1(x) в виде XY графика. По нему определить приближенно корниуравнения у(х)=0. Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero.
- Сформировать строку с результатами и вывести ее в заголовок окна графика.
Задача 4.2 Решение системы из двух нелинейных уравнений.
- Создать Mat-функции для функций f2(x) и f3(x) = f1 (x) - f2(x).
- Создать файл программы. Ввести текст заглавия задачи, как комментарий. Ввести в него аргументы в заданных пределах.
- Вывести f1(x) и f2(x) в виде XY графиков. По нему определить приближенно корни системы уравнений, как координаты точек пересечения графиков f1(x) и f2(x). Если корни на графике не просматриваются, то изменить пределы изменения аргумента и повторить операции.
- Для каждого корня найти точное значение, используя функцию fzero к переменной f3(x).
- Сформировать строку с результатами и вывести ее в заголовок окна графика.

Найдите решения систем уравнений с использованием функций MATLAB, сравните полученные результаты между собой
(вариант 10)

Последовательная проверка статистических гипотез о среднем нормального распределения (курсовая работа)
Три одинаковых шарика связаны одинаковыми невесомыми пружинами и подвешены на нити (за шарики). Нить пережигают. Найдите ускорения шариков в момент пережигания нити (а также во все последующие моменты времени) )С помощью графического метода найти интервал (a,b), на котором находится действительный корень x* уравнения x3 + x - 6 = 0 Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001.