Артикул: 1115218

Раздел:Технические дисциплины (73120 шт.) >
  Математика (26260 шт.) >
  Численные методы и вычислительная математика (306 шт.)

Название:Найти приближённое решение задачи Коши a(x)y'' + b(x)y' + c(x)y = f(x); y(0) = 0; y'(0) = 0
Решение задачи Коши ищется в виде степенного ряда , коэффициенты которого вычисляются последовательно. Ограничи­ваясь суммой , содержащей N + 1 член рада, получаем приближенное решение. Оценка погрешности этого решения в ра­боте облегчается тем, что получающиеся степенные ряды знако­чередующиеся. Требуется, чтобы эта погрешность не превосходила 0,001 при x [0, x0]
y'' + xy' + y + x = 0, x0 = 0,75

Изображение предварительного просмотра:

Найти приближённое решение задачи Коши a(x)y'' + b(x)y' + c(x)y = f(x); y(0) = 0; y'(0) = 0 <br />  Решение задачи Коши ищется в виде степенного ряда , коэффициенты которого вычисляются последовательно. Ограничи­ваясь суммой , содержащей N + 1 член рада, получаем приближенное решение. Оценка погрешности этого решения в ра­боте облегчается тем, что получающиеся степенные ряды знако­чередующиеся. Требуется, чтобы эта погрешность не превосходила 0,001 при x [0, x<sub>0</sub>] <br /> y'' + xy' + y + x = 0, x<sub>0</sub> = 0,75

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Приближенно вычислить с помощью формулы Симпсона интеграл для: 1) 2n = 2, 2) 2n = 4, 3)2n = 8 . Точность вычислений 0,001 .
Три одинаковых шарика связаны одинаковыми невесомыми пружинами и подвешены на нити (за шарики). Нить пережигают. Найдите ускорения шариков в момент пережигания нити (а также во все последующие моменты времени) )
С помощью графического метода найти интервал (a,b), на котором находится действительный корень x* уравнения x3 + x - 6 = 0 Пользуясь методом Ньютона, получить приближенное значение корня с точностью до 0,001.
С помощью полного дифференциала функции двух переменных вычислить приближенно значение выражения. Вычислить это же выражение с помощью микрокалькулятора. Оценить в процентах относительную погрешность вычислений.
Пусть длина бруска измерена сантиметровой линейкой и получено приближенное значение ap = 251 см. Найти предельную относительную погрешность δaНайти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности и = 0,259 + 45,12 + 1,0012.
Найдите собственные значения и собственные векторы. Приведите графическое представление для собственных векторов с использованием функции Matlab stem.
(вариант 10)

Символьные вычисления в MatLab
Задача 5.1 Развертка/свертка.
- Ввести выражение f1 (x) и развернуть его.
- Полученное выражение свернуть. Сравнить результат c fl(x).
Задача 2. Дифференцировать/интегрировать.
- Ввести выражение f1 (x) и найти производную по х.
- Для полученного выражения найти неопределенный интеграл. Сравнить с f1(x).
Задача 3. Разложить в ряд Тейлора.
- Ввести выражение f2(x) и найти его разложение в ряд Тейлора.
- Построить XY график для f2(x) и его разложения в ряд Тейлора F2(x).
Задача 4. Работа с командой funtool.
- Задать функцию f1 и выполнить с ней операции задачи 2.
- Задать функцию f2 и выполнить с ней операцию символьного дифференцирования

Выполните численное интегрирование для приведенных ниже интегралов (вариант 10)
Найти разность u = x - y с тремя верными знаками, если х =12,1254 ± 0,0001, у =12,128 ± 0,001.