Артикул: 1113113

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Теория вероятности (2242 шт.) >
  Теория массового обслуживания (ТМО-СМО) (57 шт.)

Название или условие:
Задана матрица Р1 вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р2 перехода из состояния i в состояние j за два шага

Изображение предварительного просмотра:

Задана матрица Р<sub>1</sub> вероятностей перехода цепи Маркова из состояния i (i=1,2) в состояние j (j=1,2) за один шаг. Найти матрицу Р<sub>2</sub> перехода из состояния i в состояние j за два шага

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Автозаправочная станция с тремя колонками обслуживает поток машин с интенсивностью 1 машина в минуту. Среднее время обслуживания одной машины 2 мин В данном районе нет другой АЗС, так что очередь машин у АЗС может расти практически неограниченно. Найти характеристики системы.Пять ткачих обслуживают 20 ткацких станков. Средняя продолжительность бесперебойной работы станка-30 минут, устранение неисправности (обрывания нити) занимает в среднем 1,5 минуты. Найти характеристики СМО
Одноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказаНа телефонную станцию поступает случайный поток вызовов; вероятность приема к вызовов за время t равна pk(t) (к = 0,1, 2, ...). Число вызовов, принятых за промежуток времени t, не зависит от того, сколько вызовов поступило до или после этого промежутка. Найти вероятность того, что за промежуток времени 2t будет s вызовов.
В вычислительном центре работает 5 персональных компьютеров (ПК). Простейший поток задач, поступающих на ВЦ, имеет интенсивность λ=10 задач в час. Среднее время решения задачи равно 12 мин. Заявка получает отказ, если все ПК заняты. Найдите вероятностные характеристики системы обслуживания (ВЦ). На автозаправочной станции 1 колонка. Площадка при станции допускает пребывание в очереди двух машин; если она занята, то прибывшая к станции машина проезжает мимо. Поток машин, прибывающих для заправки, имеет интенсивность 0,2 (машин в минуту). Процесс заправки продолжается в среднем 10 минут. Определить вероятность отказа.
К пункту мойки автомашин, рассчитанному на одну автомашину, подъезжает в среднем 5 машин в час. Процесс мойки одной автомашины занимает в среднем 15 минут. Рядом с пунктом мойки расположена площадка для ожидающих мойки автомашин, вмещающая 3 автомашины. Если площадка занята, то приезжающие для мойки автомашины уезжают в другие пункты мойки. Определить показатели эффективности этой СМОНа промышленном предприятии решается вопрос о том, сколько потребуется механиков для работы в ремонтном цехе. Пусть предприятие имеет 10 машин, требующих ремонта с учетом числа ремонтирующихся. Отказы машин происходят с частотой λ=10 отк/час. Для устранения неисправности механику требуется в среднем t=3 мин. Распределение моментов возникновения отказов является пуассоновским, а продолжительность выполнения ремонтных работ распределена экспоненциально. Возможно организовать 4 или 6 рабочих мест в цехе для механиков предприятия. Необходимо выбрать наиболее эффективный вариант обеспечения ремонтного цеха рабочими местами для механиков.
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.