Артикул: 1090005

Раздел:Технические дисциплины (61595 шт.) >
  Математика (24535 шт.) >
  Математический анализ (17134 шт.) >
  Дифференциальные уравнения (2734 шт.)

Название:Проинтегрировать одним (если это возможно) соотношением следующее уравнение Пфаффа
(z2 - y2 + yx)dx + (xz - 2xy)dy + (2xz + 2z + xy)dz = 0

Изображение предварительного просмотра:

Проинтегрировать одним (если это возможно) соотношением следующее уравнение  Пфаффа <br /> (z<sup>2</sup> - y<sup>2</sup> + yx)dx + (xz - 2xy)dy + (2xz + 2z + xy)dz = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение уравнения
x2y'' - 4xy' + 6y = x4 - x2
зная, что частным решением соответствующего ему однородного уравнения является функция y1 = x2

Весомая частица массы m брошена вертикально вверх и при движении испытывает сопротивление, пропорциональное первой степени скорости. Определить закон движения частицы, если в начальный момент t = 0 положение точки определяется координатой x = s0, а начальная скорость υ = υ0
Найти общее решение уравнения
d2r/dφ2 - (6(dr/dφ)) + 9r = 4e

Найти общее решение уравнения
y'' + y' + y = 3e2x

Найти частное решение ДУ, удовлетворяющее указанному начальному условию
xy' = √(4x2 - 2y2) + y, y(2) = 0

Найти общее решение уравнения
y'' - 5y' = 7

Найти общее решение уравнения
y'' + y = 5sin(2x)

Найти общее решение уравнения
y'' + 4y = 3sin(2x)

Найти решения системы удовлетворяющие начальным условиям: x(0) = y(0) = 0; x'(0) = υ0x; y'(0) = υ0y (k и g - постоянные величины)
Найти общее решение уравнения
y'' - 2y' + 4y = (x + 2)e3x