Артикул: 1089932

Раздел:Технические дисциплины (61594 шт.) >
  Математика (24534 шт.) >
  Математический анализ (17133 шт.) >
  Дифференциальные уравнения (2733 шт.)

Название:Найти общее решение или общий интеграл уравнения
(x2 + y2)(∂z/∂x) + 2xy(∂z/∂y) + z2 = 0

Изображение предварительного просмотра:

Найти общее решение или общий интеграл уравнения <br /> (x<sup>2</sup> + y<sup>2</sup>)(∂z/∂x) + 2xy(∂z/∂y) + z<sup>2</sup> = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
(2x'' - x' + 9x) - (y'' + y' + 3y) = 0
(2x'' + x' + 7x) - (y'' - y' + 5y) = 0
x(0) = x'(0) = 1, y(0) = y'(0) = 0

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = x, y' = y

Для данного уравнения начертить траекторию на фазовой плоскости
x'' + 2x3 = 0

Найти изображение функции
t - 2a, если 2a < t < a + b
2b - t, если a + b < t ≤ 2b
0, t > 2b или t ≤ 2a

Построив функцию Ляпунова и применив теоремы Ляпунова или Четаева, исследовать устойчивость нулевого решения задачи
x1' = x13 - x2, x2' = x1 + x23

Найти и исследовать особые точки данных уравнений и систем
В задаче установить, имеются ли предельные циклы
x' = x3 - 2y3, y' = 3x + y

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = 3x - 4y, y' = x - 2y

В задаче установить, имеются ли предельные циклы x'' + F(x') + x = 0, где F - непрерывная функция и F(y) > 0 при y >0, F(y) < 0 при y < 0
Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'' - x + y + z = 0
x + y'' - y + z = 0
x + y + z'' - z = 0
x(0) = 1, y(0) = z(0) = x'(0) = y'(0) = z'(0) = 0