Артикул: 1089932

Раздел:Технические дисциплины (61594 шт.) >
  Математика (24534 шт.) >
  Математический анализ (17133 шт.) >
  Дифференциальные уравнения (2733 шт.)

Название:Найти общее решение или общий интеграл уравнения
(x2 + y2)(∂z/∂x) + 2xy(∂z/∂y) + z2 = 0

Изображение предварительного просмотра:

Найти общее решение или общий интеграл уравнения <br /> (x<sup>2</sup> + y<sup>2</sup>)(∂z/∂x) + 2xy(∂z/∂y) + z<sup>2</sup> = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Решить задачу Коши для системы уравнений с начальными условиями x(0) = x0, y(0) = y0 двумя способами: методом исключения неизвестных и операторным методом a = 5, b = 2, c = -3, d = -2, x0 = 1, y0 = 1
Найти решение уравнения y'' + 2y' + y = 4sin(x) + 6cos(x)
Найти частное решение линейного дифференциального уравнения второго порядка, удовлетворяющее заданным начальным условиям
y'' + 4y = 4x - 8, y(0) = -2, y'(0) = 1

Указать вид частных решений для данных неоднородных уравнений, найти общее решение соответствующего однородного уравнения и найти общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.
y'' - 5y' + 6y = 4e-x

Найти решение задачи Коши
(2ln(y) - ln2(y))dy = ydx - xdy, y(4) = e2

Найти общее решение дифференциальных уравнений
xy' = xsin(y/x) + y

Найти общее решение дифференциальных уравнений первого порядка
x2tg(y/x) = xy - x2y'

Найти общее решение уравнения y'' + ay' + by = f(x) , используя характеристическое уравнение и метод вариации произвольных постоянных a = 0, b = 0, f(x) = sin2(x)
Найти общее решение или общий интеграл дифференциального уравнения второго (третьего) порядка
2(3 - y)y'' + y'2 + 1 = 0

Операторным методом найти решение задачи Коши