Артикул: 1089925

Раздел:Технические дисциплины (61591 шт.) >
  Математика (24531 шт.) >
  Математический анализ (17130 шт.) >
  Дифференциальные уравнения (2730 шт.)

Название:C помощью приема Гессе решить следующие системы:
dx/dt = x + x(x +y), dy/dt = z + y(x + y), dz/dt = y + z(x + y)

Изображение предварительного просмотра:

C помощью приема Гессе решить следующие системы:  <br /> dx/dt = x + x(x +y), dy/dt = z + y(x + y), dz/dt = y + z(x + y)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

В задаче установить, имеются ли предельные циклы
x'' + (x2 - 1)x' + x3 = 0

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
(2x'' - x' + 9x) - (y'' + y' + 3y) = 0
(2x'' + x' + 7x) - (y'' - y' + 5y) = 0
x(0) = x'(0) = 1, y(0) = y'(0) = 0

Найти изображение функции а) f(t) = sin(αt); б) f(t) = sh)αt); в) f(t) = cos(αt); г) f(t) = ch(αt)
В задаче установить, имеются ли предельные циклы
x'' + 2x' + x'3 + x = 0

Решить интегральное уравнение второго рода
Доказать, что если
1) уравнение (ax + by)dx + (mx + ky)dy = 0 не является уравнением в полных дифференциалах;
2) особая точка (0,0) этого уравнения - седло, то оно имеет непрерывный в окрестности начала координат интегрирующий множитель

Найти и исследовать особые точки данных уравнений и систем
В задаче установить, имеются ли предельные циклы
x'' + x'3 - x' + x = 0

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'0 = -ax0, x'k - axk = axk - 1 (k = 1,n); x0(0) = 1, xk(0) = 0 (k = 1,n)

Найти общее решение неоднородного линейного дифференциального уравнения второго порядка
y'' - 3y' - 4y = (2x - 3)e3x