Артикул: 1089925

Раздел:Технические дисциплины (61591 шт.) >
  Математика (24531 шт.) >
  Математический анализ (17130 шт.) >
  Дифференциальные уравнения (2730 шт.)

Название:C помощью приема Гессе решить следующие системы:
dx/dt = x + x(x +y), dy/dt = z + y(x + y), dz/dt = y + z(x + y)

Изображение предварительного просмотра:

C помощью приема Гессе решить следующие системы:  <br /> dx/dt = x + x(x +y), dy/dt = z + y(x + y), dz/dt = y + z(x + y)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти изображение функции а) f(t) = sin(αt); б) f(t) = sh)αt); в) f(t) = cos(αt); г) f(t) = ch(αt)
Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'0 = -ax0, x'k - axk = axk - 1 (k = 1,n); x0(0) = 1, xk(0) = 0 (k = 1,n)

Построив функцию Ляпунова и применив теоремы Ляпунова или Четаева, исследовать устойчивость нулевого решения задачи
x1' = x13 - x2, x2' = x1 + x23

Исследовать устойчивость нулевого решения, пользуясь условиями отрицательности действительных частей всех корней многочлена с действительными коэффициентами
xIV + 2x''' + 4x'' + 3x' + 2x = 0

Решить систему линейных дифференциальных уравнений с постоянным коэффициентом
x'' - x + y + z = 0
x + y'' - y + z = 0
x + y + z'' - z = 0
x(0) = 1, y(0) = z(0) = x'(0) = y'(0) = z'(0) = 0

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = 2x + 3y, y' = x + 4y

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = x, y' = y

Исследовать особые точки и изобразить графически семейство интегральных кривых в окрестности особой точки
x' = 3x - 4y, y' = x - 2y

Пользуясь методом Коши, найти интегральную поверхность, проходящую через заданную кривую
z = x1p1 + x2p2 + x3p3 + p12 + p22 + p32; x10 = 1, x20 = s1, x30 = s1 + s2, z0 = 1 + s12

Решить интегральное уравнение второго рода