Артикул: 1032866

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория массового обслуживания (ТМО-СМО) (54 шт.)

Название:Рассмотрим СМО типа M/M/1/K. Требуется:
1. Вычислить стационарные вероятности Pk при λ=μ (выразить через λ и µ).
2. Найти среднее число требований в системе N  при λ=μ   (выразить через λ и µ)
3. Найти среднее число требований в очереди Nq при этих же условиях (выразить через  и )

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Одноканальная система массового обслуживания с отказами – телефонная линия. Интенсивность потока вызовов λ = 0,7 (вызовов в минуту). Средняя продолжительность разговора МТобс = 1,4 мин. Все потоки – простейшие. Требуется определить предельные (при t →∞ ) абсолютную и относительную пропускную способность, а также вероятность отказаНайти оптимальное число телефонных номеров на предприятии, если заявки на переговоры поступают с интенсивностью 1,2 заявки в минуту, а средняя продолжительность разговора по телефону составляет tобс = 2 минуты. Найти также вероятность того, что в СМО за 3 минуты поступит: а) точно 2 заявки, б) не более 2-х заявок.
Интенсивность потока посетителей столовой составляет 150 человек в час. Имеется 3 кассира, каждый из которых обслуживает в среднем 1 посетителя за минуту. Найти характеристики СМООдноканальная СМО с отказами представляет собой одну телефонную линию. Заявка (вызов), пришедшая в момент, когда линия занята, получает отказ. Все потоки событий простейшие. Интенсивность потока λ=0,95 вызова в минуту. Средняя продолжительность разговора t=1 мин. Определите вероятностные характеристики СМО в установившемся режиме работы. Сколько телефонов должно работать параллельно, чтобы вероятность отказа была меньше 1/10?
Сберкасса имеет трех контролеров-кассиров (n= 3) для обслуживания вкладчиков. Поток вкладчиков поступает в сберкассу с интенсивностью λ= 30 чел./ч. Средняя продолжительность обслуживания контролером-кассиром одного вкладчика toбс = 3 мин. Определить характеристики сберкассы как объекта СМОМагазин посещает в среднем 90 человек в час. Имеющийся один кассир обслуживает в среднем одного покупателя в минуту. Очередь в зал обслуживания ограничена 5 покупателями. Оценить эффективность работы СМО.
Предположим, что в телефонном режиме на СКЦ в случайном порядке поступает в среднем 2 заявки за 10 минут. Определить поток вероятности p (t) i поступления в СКЦ в среднем 4 заявки за 30 минут. В билетной кассе на железнодорожной станции работает 1 кассир. Поток клиентов – простейший с интенсивностью 10 человек в час. Время обслуживания – показательное со средним 5 мин. Определить характеристики обслуживания, если все клиенты становятся в очередь, длина которой не ограничена.
Автозаправочная станция (АЗС) представляет собой систему массового обслуживания с одним каналом. Площадка при станции допускает очередь не более 3 машин. Поток машин, прибывающих для заправки имеет интенсивность 1 машина в минуту. Процесс заправки продолжается 1,25 мин Найти характеристики системы, считая все потоки простейшими.По телефонной линии на ГМСКЦ поступает в среднем 1, 2 телефонных вызовов в минуту. Средняя продолжительность разговора составляет 2 минуты. Найти основные характеристики С (как системы) и оценить эффективность ее работы.