Артикул: 1030831

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название или условие:
Симплексным методом решить следующую задачу линейного программирования:

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Симплексным методом решить следующую задачу линейного программирования:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти наименьшее значение линейной функции L = 7x1 + 5x2 на множестве неотрицательных решений системы уравнений
Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится по отдельной технологической линии. Суточный объем первой линии – A изделий, второй линии – B изделий. На радиоприемник первой модели расходуется C однотипных элементов электронных схем, на радиоприемник второй модели – D таких же элементов. Максимальный суточный запас используемых элементов равен E единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны Q и P ед. соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи. Провести анализ на чувствительность
Вариант 9
A=75, C=10, E=680, Q=15, B=65, D=6, P=10.
Минимизировать линейную функцию L = 12x1 + 4x2 при ограничениях: x1 + x2 ≥ 2, x1 ≥ 1/2, x2 ≤ 4, x1 - x2 ≤ 0
Необходимо решить задачу линейного программирования
Решение военно-логической задачи по распределению ударной группы авиационного подразделения
В авиационном подразделении имеется 40 вертолетов. Планируется удар полковым вылетом по 3-м групповым целям: скоплению танков, двум дивизионам самоходной артиллерии и подразделению мотопехоты на бронетранспортерах. Необходимо найти оптимальный вариант распределения вертолетов по объектам удара и оценить его эффективность по математическому ожиданию поражаемой силы, выраженной в единицах боевого потенциала.
Боевой потенциал ударной группы приведен в табл. 1. Боевые потенциалы групповых целей приведены в табл. 2.

Задана система ограничений: x1 + x2 + 2x3 - x4 = 3, x2 + 2x4 = 1 и линейная форма L = 5x1 - x3 . Найти оптимальное решение, минимизирующее линейную форму
Необходимо найти
F = 2x1 + 4x2 → max при
3x1 + 6x2 ≤ 12
2x1 - x2 ≥ -2
-x1 + 3x2 ≥0
x1 ≥ 0, x2 ≥ 0

Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Максимизировать линейную форму L = 4x5 + 2x6 при ограничениях: x1 + x5 + x6 = 12, x2 + 5x5 - x6 = 30, x3 + x5 - 2x6 = 6, 2x4 + 3x5 - 2x6 = 18, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥0