Артикул: 1003962

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название:Три судна доставили в порт 6000 т чугуна, 4000 т железной руды и 3000 т апатитов. Разгрузку можно производить как непосредственно в железнодорожные вагоны для последующей доставки потребителям, так и на портовые склады. В вагоны можно разгрузить 8000 т, а остаток груза придется направить на склады. Необходимо учесть, что поданные в порт вагоны не приспособлены для перевозки апатитов. Стоимость выгрузки 1 т в вагоны составляет соответственно 4,30, 5,25 и 2,20 ден. ед. Записать в математической форме условия полной разгрузки судов, если затраты на нее должны составить 58850 ден. ед.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Обработка деталей А и В может производиться на трех станках, причем каждая деталь должна последовательно об­рабатываться на каждом из станков. Прибыль от реализации детали А — 100 р., детали В — 160 р. Исходные данные при­ведены в табл. 20.4.
Определить производственную программу, максимизирую­щую прибыль при условии: спрос на деталь А - не менее 300 шт., на деталь В — не более 200 шт.

Найти наибольшее значение функции L = x1 + 3x2 + 3x3 при значениях: x2 + x3 ≤ 3, x1 - x2 ≥ 0, x2 ≥ 1, 3x1 + x2 ≤ 15
Фирма производит товар двух видов в количествах x и y. Задана функция полных издержек C(x,y). Цены этих товаров на рынке равны P1 и P2. Определить, при каких объемах выпуска достигается максимальная прибыль, найти эту прибыль.
C(x,y) = 7x2 + 8xy + 3y2 + 90, P1 = 110, P2 = 70

Дать геометрическую интерпретацию следующих взаимно двойственных задач:
Исходная задача (I): найти неотрицательные значения (x1, x2) из условий x1 + 2x2 ≥ 4, x1 - x2 ≥ - 1 и минимизации линейной функции L = 3x1 + 2x2
Двойственная задача (I'): найти неотрицательные значения (y1, y2) из условий y1 + y2 ≤ 3, 2y1 - y2 ≤ 2 и максимизации линейной функции T = 4y1 - y2
Симплекс-метод (реферат)Найти полуплоскость, определяемую неравенством
2x1 + 3x2 - 12 ≤ 0

Решить задачу о назначениях по данной матрице стоимостей
Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Провести моделирование и решить специальную задачу линейного программирования.
Компания, занимающаяся ремонтом автомобильных дорог, в следующем месяце будет проводить ремонтные работы на пяти участках автодорог. Песок на участки ремонтных работ может доставляться из трех карьеров, месячные объемы предложений по карьерам известны. Из планов производства ремонтных работ известны месячные объемы потребностей по участкам работ. Имеются экономические оценки транспортных затрат (в у. е.) на перевозку 1 тонны песка с карьеров на ремонтные участки.
Числовые данные для решения содержатся ниже в Матрице планирования.
Требуется:
1) Предложить план перевозок песка на участки ремонта автодорог, который обеспечивает минимальные совокупные транспортные издержки.
2) Что произойдет с оптимальным планом, если изменятся условия перевозок: а) появится запрет на перевозки от первого карьера до второго участка работ?; б) по этой коммуникации будет ограничен объем перевозок 3 тоннами?

Необходимо найти
F = 2x1 + 4x2 → max при
3x1 + 6x2 ≤ 12
2x1 - x2 ≥ -2
-x1 + 3x2 ≥0
x1 ≥ 0, x2 ≥ 0