Артикул: 1003086

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Линейное программирование (375 шт.)

Название или условие:
Витамины А, В и С, которых требуется в день 6, 8 и 2 единицы соответственно, содержатся в двух видах продуктов. Стоимость первого продукта 5 руб/кг, второго – 2 руб/кг. Первый продукт содержит в одном килограмме 2 единицы витамина А, 4 единицы витамина В и 2 единицы витамина С; второй продукт – 2, 3, 0 единиц соответственно. Требуется поставить задачу составления пищевого рациона минимальной стоимости

Описание:
Методы оптимизации

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Максимизировать линейную форму L = 2x1 - x4 при следующей системе ограничений
Необходимо найти
F = 2x1 + 4x2 → max при
3x1 + 6x2 ≤ 12
2x1 - x2 ≥ -2
-x1 + 3x2 ≥0
x1 ≥ 0, x2 ≥ 0

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится по отдельной технологической линии. Суточный объем первой линии – A изделий, второй линии – B изделий. На радиоприемник первой модели расходуется C однотипных элементов электронных схем, на радиоприемник второй модели – D таких же элементов. Максимальный суточный запас используемых элементов равен E единиц. Прибыли от реализации одного радиоприемника первой и второй моделей равны Q и P ед. соответственно. Определите оптимальные суточные объемы производства первой и второй моделей на основе графического решения задачи. Провести анализ на чувствительность
Вариант 9
A=75, C=10, E=680, Q=15, B=65, D=6, P=10.
Максимизировать линейную форму L = x2 + x3 при ограничениях: x1 - x2 + x3 = 1, x2 - 2x3 + x4 = 2
Найти оптимальный план транспортной задачи
Для изготовления изделий двух видов имеется 100 кг металла. На изготовление одного изделия I вида расходуется 2 кг металла, а изделия II вида - 4 кг. Составить план производства, обеспечивающий получение наибольшей прибыли от продажи изделий, если отпускная стоимость одного изделия I вида составляет - 3 руб., а изделия II вида - 2 руб., причем изделий I вида требуется изготовить не более 40, а изделий II вида - не более 20
Решить задачу с использованием графического метода
Решить задачу о назначениях по данной матрице стоимостей
Составить экономико-математическую модель задачи об использовании сырья и решить ее графически.
Задана система ограничений: x1 + x2 + 2x3 - x4 = 3, x2 + 2x4 = 1 и линейная форма L = 5x1 - x3 . Найти оптимальное решение, минимизирующее линейную форму