Артикул: 1147493

Раздел:Технические дисциплины (93253 шт.) >
  Теоретические основы электротехники (ТОЭ) (11423 шт.) >
  Переходные процессы (1360 шт.)

Название или условие:
10.
Выберете вид свободной составляющей для цепи второго порядка при отрицательных действительных и равных корнях характеристического уравнения.
1) iCB=A1ep1t+A2ep2t
2) iCB=Ae-δ tsin(ω0t+v)
3) iCB=Aept
4) iCB=(A1+A2t)ept

Описание:
Ответ на вопрос теста

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Проанализировать схему. На основании анализа построить приближенно график U2(t)
Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 8 Схема 7

Определить корни характеристического уравнения при подключении емкости, заряженной до напряжения 10 В, если R1 = 30 Ом; R2 = 10 Ом;
L = 0.1 Гн; C = 10-3 Ф;
J(t)=4.71sin(100t+38.13°) A

РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В РАЗВЕТВЛЕННОЙ ЦЕПИ
1. Рассчитать переходный процесс классическим методом:
− определить законы изменения токов и напряжений после коммутации
− вычислить 10 − 12 значений токов и напряжений
− построить кривые изменения токов и напряжений в функции времени по полученным данным
2. Заменить источник постоянного напряжения источником синусоидальной ЭДС − e = Emsinωt . ( Em = E ) . Определить закон изменения входного тока классическим методом.
3. Определить законы изменения тока, протекающего по катушке, и напряжения на конденсаторе от источника постоянного напряжения операторным методом. Сравнить результаты расчета, полученные классическим и операторным методом.

Е = 15(0-) В, E(0+)=10 B,
L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить iL(t)

Построить приближенно график UR(t).
Переходные процессы в линейных электрических цепях (Курсовая работа)
ЗАДАЧА 1.1 Классический метод анализа переходных процессов
ЗАДАЧА 1.2 Операторный и качественный анализ переходных процессов
Данные 9 Схема 2

Ко входу последовательной RL-цепи подключен источник постоянной ЭДС. Параметры элементов цепи: E = 5 В, R = 2 кОм, L = 5 мГн. В нулевой момент времени источник отключается (заменяестя внутренним сопротивлением).
Составьте дифференциальное уравнение относительно напряжения на катушке индуктивности.
Определите начальное условие для решения дифференциального уравнения.
Е = 10 В, L = 1 мГн.
R1 = 10 Ом, R2 = 10 Ом, R3 = 30 Ом,
Определить ic (поскольку конденсатор в задаче убран, будем определять ток источника)

Б.23.
UC0=100 В, С = 1мкФ, L = 1 Гн. Определить: ток и напряжения элементов, как функции времени; найти их максимальные значения; построить график процесса.