Артикул: 1128068

Раздел:Технические дисциплины (80221 шт.) >
  Математика (30871 шт.) >
  Дискретная математика (591 шт.) >
  Комбинаторика (299 шт.)

Название:На книжной полке стоят 12 книг. Сколькими способами можно выбрать 5 из них так, чтобы никакие две из них не стояли рядом.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

В почтовом отделении продаются открытки 10 сортов. Сколькими способами можно купить в нем 12 открыток? 8 открыток? Сколькими способами можно купить 8 различных открыток?На дискотеке 80% времени был выключен свет, 90% времени играла музыка и 50% времени шёл дождь. Какую наименьшую долю времени всё это обязано было происходить одновременно?
В студенческой группе 14 девушек и 6 юношей. Сколькими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола? На пустую шашечную доску надо поместить две шашки разного цвета. Сколько различных положений могут они занимать на доске?
В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?Составить различные перестановки из элементов множества E = {2,7,8} ; подсчитать их число
Сколькими способами можно выбрать две детали из ящика, содержащего 10 деталей?Сколькими способами можно расставить на полке 5 различных книг?
В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?9 карточек пронумерованы числами 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 .
Из этих карточек четыре наугад взятых карточки выкладываем в ряд. Сколько при этом можно получить различных четырехзначных чисел?