Артикул: 1121292

Раздел:Технические дисциплины (78364 шт.) >
  Математика (30167 шт.) >
  Дискретная математика (442 шт.)

Название или условие:
Логическая функция задана номерами наборов аргументов, на которых она принимает значение единица. Найти: 1) СКНФ и СДНФ, 2) минимальную ДНФ двумя способами – методом Квайна-Мак-Класки и по карте Карно.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Решить логическое уравнение
Минимизировать с помощью карт Карно двоичную функцию от 4-х переменных, заданную своими значениями на наборах
Используя определение равенства множеств и операции над множествами, проверить указанное равенство и проиллюстрировать решение с помощью диаграммы Эйлера-Венна.
Задано универсальное множество U и множестваA,B,C,D. Найти результаты действий a) - д) и каждое действие проиллюстрировать с помощью диаграммы Эйлера-Венна.
Описать элементы множества M, которое задано такой порождающей процедурой:
1. 3 ∈ M ; 2. Если элемент x∈M , то 3x∈M .
3. Множество M – является подмножеством любого множества A , удовлетворяющего условиям №1 и №2.
Алфавит состоит из множества символов E={+,∗,0,1,f}. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.
Найдите значения следующих выражений
Привести три самостоятельных примера применения оператора подстановки к простейшим числовым функциям

Найти минимальную тупиковую форму функции, используя карты Карно
Ввести необходимые элементарные высказывания и записать логической формулой следующее предложение:
«Если дискриминант квадратного уравнения неотрицательный, то уравнение имеет один корень или оно имеет два корня»
Построить СДНФ функции