Артикул: 1121069

Раздел:Технические дисциплины (78364 шт.) >
  Математика (30168 шт.) >
  Математический анализ (20356 шт.) >
  Кратные и криволинейные интегралы (1406 шт.)

Название:Вычислить

Изображение предварительного просмотра:

Вычислить

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти объем тела, ограниченного поверхностями : S1: x2 + y2 = z2; S2: x2 + y2 + z2 = R2; S3: y = 0 (y ≥ 0)
Найти момент инерции относительно оси ОХ однородного тела, ограниченного поверхностями S1: x = y2 + z2; S2: x = 1
Вычислить координаты центра тяжести части плоскости z = x, ограниченной плоскостями x + y = 1, y = 0, x = 0
Вычислить двойной интеграл, если область Д ограничена линиями: y=2x, y=0, x=1
С помощью двойного интеграла, вычислить площадь фигуры, ограниченной линиями y=√x, y = 2√x, x = 4
Найти массу поверхности сферы и статистический момент Mxy верхней полусферы, если поверхностная плотность в каждой точке равна расстоянию этой точки от вертикального диаметра
Применяя формулу Стокса, найти интеграл, если С - окружность x2 + y2 = z2, z = 0
Найти интеграл, расположенный по поверхности S тела, ограниченного этой поверхностью.
Вычислить объем тела ограниченного сферой x2 + y2 + z2 = 4a2 и цилиндром x2+y2=a2 и расположенного вне цилиндраИзменить порядок интегрирования