Артикул: 1120949

Раздел:Технические дисциплины (78290 шт.) >
  Математика (30169 шт.) >
  Теория вероятности (3043 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1837 шт.)

Название:Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что: а) только один из стрелков поразит цель; б) только два стрелка поразят цель; в) все три стрелка поразят цель.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Игральная кость бросается три раза. Какова вероятность выпадения одной «шестерки»?В каждой из двух урн содержится по 6 белых и по 4 черных шара. Из первой урны наугад один шар переложили во вторую. Какова вероятность, что шар, наугад вытащенный из второй урны, будет черным?
Суточное потребление электроэнергии исправной печью является случайной величиной, распределенной по нормальному закону со средним 1000 кВт/ч и СКО 35 . Если суточное потребление превысит 1100 кВт, то по инструкции печь отключают и ремонтируют. Найти вероятность ремонта печи. Каким должно быть превышение по инструкции, чтобы вероятность ремонта печи была равна 0,02?Непрерывная случайная величина задана ее плотностью распределения. Найти параметр c, функцию распределения, математическое ожидание, дисперсию, вероятность попадания случайной величины в интервал [1; 2,5 ] и квантиль порядка 0,75.
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не более, чем на 0,09.Случайная величина ξ имеет нормальное распределение с математическим ожиданием a = 56 и среднеквадратичным отклонением σ = 8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р = 0,95
Из отрезка (-1,2) наудачу взяты два числа. Какова вероятность, что их сумма больше единицы, а произведение меньше единицы?Вероятность появления поломок на каждой из 5 соединительных линий равна 0,15. Какова вероятность того, что хотя бы две линии исправны?
Заданы математическое ожидание α и среднее квадратическое отклонение s нормально распределённой случайной величины X. Требуется найти: а) вероятность того, что X примет значение, принадлежащее интервалу (a, b); б) вероятность того, что абсолютная величина отклонения X – α окажется меньше d.
Дано: α = 6, s = 2, a = 4, b = 12, d = 4.
Плотность вероятности непрерывной случайной величины ξ задана следующим выражением
если 0 < x <1,при других х
Найти постоянную С, функцию распределения F (x), математическое ожидание Мξ и дисперсию Dξ случайной величины ξ.