Артикул: 1114054

Раздел:Технические дисциплины (72122 шт.) >
  Теоретическая механика (теормех, термех) (1809 шт.) >
  Динамика (340 шт.)

Название:Задача – Применение теоремы об изменении кинетической энергии к исследованию движения механической системы
Механическая система состоит из катков, ступенчатых щкивов и груза. Катки следует считать сплошыми однородными дисками, ступенчатые шкивы имеют радиусы ступеней R и r и радиусы инерции относительно оси вращения ρ. Тела системы соединены друг с другом нерастядимыми нитями; участки нитей параллельны соответсвующим плоскостями. К одному из тел приложен постоянный момент сопротивления Мс. Все катки катятся по плоскости без скольжения. Исследовать движение механической системы, если известные величичны ланы в таблице 3.2, а искомые величины в таблице 3.3, где Р1, Р2, Р3 – веса тел;
T (v1) - кинетическая энергия системы, выраженная через скорость тела 1;
A(S1), A(h1) - сумма работ всех сил, выраженная через перемещение тела 1;
A(φ1) - сумма работ всех сил, выраженная через угловое перемещение тела 1;
a1- ускорение центра масс тела;
ω1 - угловое ускорение тела 1;
L1,2(v1) - кинетический момент тел 1-2, выраженный через скорость тела 1;
FAB - натяжение нити на участке АВ;
X1, Y1 - проекция сил реакций оси тела 1 на оси координат;
Fтр3 - сила трения между телом 3 и поверхностью.

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

Задача – Применение теоремы об изменении кинетической энергии к исследованию движения механической системы <br /> Механическая система состоит из катков, ступенчатых щкивов и груза. Катки следует считать сплошыми однородными дисками, ступенчатые шкивы имеют радиусы ступеней R и r и радиусы инерции относительно оси вращения ρ. Тела системы соединены друг с другом нерастядимыми нитями; участки нитей параллельны соответсвующим плоскостями. К одному из тел приложен постоянный момент сопротивления Мс. Все катки катятся по плоскости без скольжения. Исследовать движение механической системы, если известные величичны ланы в таблице 3.2, а искомые величины в таблице 3.3, где Р<sub>1</sub>, Р<sub>2</sub>, Р<sub>3</sub> – веса тел; <br /> T (v<sub>1</sub>) - кинетическая энергия системы, выраженная через скорость тела 1; <br /> A(S<sub>1</sub>), A(h<sub>1</sub>) - сумма работ всех сил, выраженная через перемещение тела 1; <br /> A(φ<sub>1</sub>) - сумма работ всех сил, выраженная через угловое перемещение тела 1; <br /> a<sub>1</sub>- ускорение центра масс тела; <br /> ω<sub>1</sub>  - угловое ускорение тела 1; <br /> L<sub>1,2</sub>(v<sub>1</sub>) - кинетический момент тел 1-2, выраженный через скорость тела 1; <br /> F<sub>AB</sub> - натяжение нити на участке АВ; <br /> X<sub>1</sub>, Y<sub>1</sub> - проекция сил реакций оси тела 1 на оси координат; <br /> F<sub>тр3</sub> - сила трения между телом 3 и поверхностью.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Динамическое исследование движения системы с одной степенью свободы
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение, служащее для определения зависимости s(t) координаты точки A от времени – дифференциальное уравнение движения системы.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных четырьмя независимыми способами, проинтегрировать дифференциальное уравнение движения системы, получив зависимость s(t) координаты точки A от времени.
5. Определить натяжения тросов в начальный момент времени (при t = 0).

Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)
Тело массой 1 кг падает вертикально вниз (сила сопротивления воздуха R = 0.03v2) с высоты H = 50 м. Какова будет его скорость, когда тело достигнет поверхности Земли?Дано: M = 100 Н·м, r1 = 0,2 м, r2 = 0,3 м, r3 = 0,4 м
Определить силу Q (задача Д-14, вариант 3)

Динамика материальной точки
Задана сила F = 28, действующая на тело и его масса m= 14. Начальные условия: t = 0, x0 = 0, υ0=5. Найти x при t = 6
Дано: OA = 40 cм, M = 400 Н·м.
Найти Р
(задача Д-14, вариант 22)

Дано: d1 = 80 см, d2 = 25 см, Q = 5000 H, c = 100 Н/см, h = 4 см
Найти Р (задача Д-14, вариант 16)

Дано: OC = 2·OA = 100 cм, Р = 200 Н, М = 50 Н·м, С = 50 Н/см, механизм расположен в горизонтальной плоскости
Определить: h - деформацию пружины (задача Д-14, вариант 23)

Определить ускорение точки а, аА - ?
Дано: G1 = 8320 Н, G2 = 680 Н, G3 = 480 Н, r1 = 0.162 м, R2 = 0.396 м, r2 = 0.128 м, R3 = 0.265 м, r3 = 0.198 м, ρ2 = 0.276 м, α = 30°, k = 0.00005 м

Задача 4.2 (вариант 3)
Динамика плоского движения
К барабану лебедки (1) приложен момент M(t). Второй конец троса намотан на внутренний барабан колеса (2), которое катится без проскальзывания по наклонной плоскости. Барабан лебедки – однородный цилиндр; радиус инерции колеса ρ2, то есть момент инерции J2 = m2ρ22. Определить закон вращения лебедки φ2(t). В начальный момент система была в покое. Задачу решить двумя способами:
А) С помощью фундаментальных законов (1) и (2)
В) С помощью теоремы об изменении кинетической энергии (3)
Дано: m1= 4.0 кг, m2 = 4.0 кг, R1 = 0.3 м, R2 = 0.3 м, r2 = 0.2 м, ρ = 0.25 м, α = 30°, М = 3-0.2t Н·м
Найти: φ2=φ2(t)