Артикул: 1113122

Раздел:Технические дисциплины (71634 шт.) >
  Математика (25302 шт.) >
  Математический анализ (17570 шт.) >
  Дифференциальные уравнения (2771 шт.)

Название:Методом операционного исчисления найти частное решение системы дифференциальных уравнений, удовлетворяющее начальным условиям.
x' = x - y , x(0) = 1
y' = x + y , y(0) = 0

Описание:
Подробное решение

Изображение предварительного просмотра:

Методом операционного исчисления найти частное решение системы дифференциальных уравнений,  удовлетворяющее начальным условиям. <br /> x' = x - y   , x(0) = 1 <br /> y' = x + y    , y(0) = 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти общее решение дифференциального уравнения
y'' + 4y' + 4y = 0

Алгоритм решения дифференциальных уравнений, допускающие понижение порядка производной
(Ответ на теоретический вопрос – 1 страница Word)
Найти общее решение уравнения
x2y'' + 4xy' + 12y = ln(x)

Найти закон движения точки, на которую действуют две силы: 1) сила притяжения к неподвижному центру, пропорциональная расстоянию точки от этого центра P = -k2mx и 2) периодическая сила, определяемая формулой F = Amcos(pt)
Найти частное решение дифференциального уравнения при данных начальных условиях
y'' + 3y' + 2y = 0, y(0) = 1, y'(0) = 1

Найти общее решение уравнения
y'' - 2y' = x3 + 2x - 1

Найти общее решение уравнения
y'' + y' + y = 3e2x

Найти общее решение уравнения
y'' + y = (3x + 2)sin(2x) + (x2 + x + 2)cos(2x)

Найти общее решение уравнения Эйлера
(3x + 1)2y'' - 2(3x + 1)y' - 12y = 0

Найти общее решение ДУ 2-го порядка и выполнить проверку полученного решения
y'' - 13y' + 12y = 12x2 - 26x + 2