Артикул: 1106692

Раздел:Технические дисциплины (69495 шт.) >
  Теоретическая механика (теормех, термех) (1770 шт.) >
  Динамика (328 шт.)

Название или условие:
Дифференциальные уравнения движения точки. Решение задач динамики точки. (реферат)

Описание:
Введение в динамику. Законы динамики
ЗАКОНЫ ДИНАМИКИ.
ЗАДАЧИ ДИНАМИКИ МАТЕРИАЛЬНОЙ ТОЧКИ
СИСТЕМЫ ЕДИНИЦ
ОСНОВНЫЕ ВИДЫ СИЛ
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ ТОЧКИ. РЕШЕНИЕ ЗАДАЧ ДИНАМИКИ ТОЧКИ
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ МАТЕРИАЛЬНОЙ ТОЧКИ
РЕШЕНИЕ ПЕРВОЙ ЗАДАЧИ ДИНАМИКИ (ОПРЕДЕЛЕНИЕ СИЛ ПО ЗАДАННОМУ ДВИЖЕНИЮ)
РЕШЕНИЕ ОСНОВНОЙ ЗАДАЧИ ДИНАМИКИ ПРИ ПРЯМОЛИНЕЙНОМ ДВИЖЕНИИ ТОЧКИ
Количество страниц - 12

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Индивидуальное задание №3
Вариант №28

Механическая система, состоящая из абсолютно твердых тел, под действием сил тяжести приходит в движение из состояния покоя с недеформированной невесомой пружиной; начальное положение системы показано на рисунке 1. Учитывая упругую силу в момент сопротивления качению, определить скорость v1 тела 1 в тот момент, когда пройденный им путь станет равным S1. Другими силами сопротивления пренебречь.

Расчётно-графическая работа № 1 на тему: «Динамическое исследование движения механической системы с одной степенью свободы» .
При выполнении задания необходимо:
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение тел заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение движения системы, служащее для определения зависимости s(t) координаты точки A от времени.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных тремя независимыми способами, проинтегрировать дифференциальное уравнение движения системы и получить зависимость s(t) координаты центра A катка 1 от времени.
5. Определить натяжения тросов в начальный момент времени (при t=0 ).
Вариант 244

Задача 3.1
Груз массой m, получив в точке А начальную скорость V0, движется по гладкой горизонтальной поверхности под действием постоянной силы Q. На груз действует сила сопротивления R, зависящая от скорости груза. Определить скорость груза в момент времени t1.
Вариант 5
Дано: R=µ*V=0.4*V(H), m=4кг, V0=20м/с, µ=0.4H*c/м, t1=5c, g≈9.81м/c2, Q=4H.
Определить: V1-?
Практическое задание 5
«Движение материальной точки под действием постоянных сил»
Вариант 17.
Варианты 16…20 (схема 4). Камень скользит в течение τ секунд по участку АВ откоса, составляющему угол α с горизонтом и имеющему длину l. Его начальная скорость VA. Коэффициент трения скольжения камня но откосу равен f. Имея в точке В скорость VB камень через Т секунд ударяется в точке С о вертикальную защитную стену. При решении задачи принять камень за материальную точку; сопротивление воздуха не учитывать.
Дано: VB=2*VA, α=45°, l =6м, τ=1с, h=6м

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.

Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.
Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью vB. Через T с лыжник приземляется со скоростью vC в точке C горы, составляющей угол β с горизонтом.
При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха
Вариант 0

Определить:
1. главный вектор сил инерции блока 2;
2. главный момент сил инерции блока 2;
3. натяжение нити между грузом и блоком;
4. массу груза 1;
5. минимальную массу груза 1, при которой система будет находиться в покое.
Вариант 22

Для заданной механической системы требуется определить кинематическую величину (угловую скорость заданного тела или линейную скорость).
○Дано: F, Mc, m1, m2, m3, R2, R3, α. Звенья 2 и 3 – сплошные однородные цилиндры.
Найти: скорость тела 1 - v1, в зависимости от пройденного пути с помощью теоремы об изменении кинетической энергии.

Задание Д4. Исследование относительного движения материальной точки
Шарик М, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела А (рис. 11). Найти уравнение относительного движения этого шарика х = f(t), приняв за начало отсчета точку О. Тело А равномерно вращается вокруг неподвижной оси (ось вращения z1 вертикальна). Найти также координату х и давление шарика на стенку канала при заданном значении t = t1.
Вариант 7
Дано: m = 0,03 кг; ω = 2π рад/с; х0 = 0,3 м; ; t1 = 0,2 с; h = 0,2 м; f = 0.

Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 54 (Схема 22)
Дано: mA=9кг, mB=3кг, mC=15кг, α=60°, β=45°, RC=30см=0.3м, g≈9.8м/с2, R=60см=0.6м, r=40см=0.4м, i=52см=0.52м, SA=1м.
Определить: VA-?