Артикул: 1091472

Раздел:Технические дисциплины (62997 шт.) >
  Теоретическая механика (теормех, термех) (1753 шт.) >
  Кинематика (519 шт.) >
  Сложное движение точки (65 шт.)

Название:По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 4πt2 см
xe = t3 + 4t
t1 = 2 c
R = 48 см
(задача К-7, вариант 30)

Изображение предварительного просмотра:

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t<sub>1</sub> абсолютную скорость и абсолютное ускорение точки M. <br /> Дано: <br />  OM = Sr(t) =  4πt<sup>2</sup> см <br /> x<sub>e</sub> = t<sup>3</sup> + 4t <br />  t<sub>1</sub> = 2 c <br />  R = 48 см <br /> (задача К-7, вариант 30)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Точка М движется относительно тела D. По заданным уравнениям относительного движения точки М и движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M. Схема механизма показана на рисунке 1, исходные данные, приведены в таблице 1 (задача К-7, вариант 8)
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Исходные данные:
OM = Sr = 6πt2 см, t1 = 1 с,
R = 18 см,
O1O = O2A = 20 см,
φe = (πt3)/6
(задача К-7, вариант 23)

Дано:
Точка М движется относительно пластины по окружности. Уравнение относительного движения т. М:
s(t) = 4π(sin(2πt))2 = cм
Уравнение движения пластины:
ωe(t) = 3t − 2 (1/с)
R = 9 cм
t1 = 1/3 сек
Определить: Для заданного момента времени определить абсолютную скорость и абсолютное ускорение т.М.

Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t3 - 2t2 . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t2 - t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 25sin(πt/3)
φв(t) = 2t2 - 0,5t
t1 = 4c
a = 25 cм
(задача К-7, вариант 11)

Дано: φ = 4(t2 - t), рад
S = ОМ = 40(3t2 + t), см
t = 1 c
Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М:
- абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей
- абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса.
Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ = ОМ(t) в сантиметрах заданы в таблице.

Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Определение абсолютной скорости и абсолютного ускорения точки
Точка М движется заданным образом (см. рисунок К-3) в подвижной системе отсчета, движение которой, в свою очередь, задано (законы OM = s(t) и φ(t) или φ1(t) и φ2(t) известны). Для момента времени t1 найти скоростьVM и ускорение WM.
Вариант 6
Дано: a = 40 см, α = 30°, S = ОМ = asin(πt/3), φ = t3-5t, t = 0.5 c

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 8cos(πt/2)
φе(t) = -2πt2 рад
t1 = 3/2c
α = 45°
(задача К-7, вариант 26)

Задача К4. Вариант 63
Дано:
φ = t2-2t3
b = 16 см
S = AM = 60(t4-3t2)+56
t1 = 1c
Найти: Vab, aab