Артикул: 1091078

Раздел:Технические дисциплины (62023 шт.) >
  Теоретическая механика (теормех, термех) (1594 шт.) >
  Кинематика (493 шт.) >
  Уравнение движения точки (206 шт.)

Название:По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10)

x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см
t=1, с

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10) <br /> <br /> x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см <br /> t=1, с

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=60t, y=2000-4,9t2
Найти: Т, L, υ, а.

Задание К1-22
Дано: уравнения движения точки в плоскости ху t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1 .

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 9)
Даны уравнения движения точки:
x = 5cos 3/2πt-2,5 y = 5sin 3/2πt+5 (x,y-см, t -c)
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на ее траектории.
3. Найти закон движения точки по траектории s = s(t), принимая за начало отсчета расстояний начальное положение точки.
4. Определить время T прохождения точкой полной окружности.

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 23)
x = 3 - 3t2 + 1
y = 4 - 5t2 + (5t/3)
t1 = 1 c

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

Даны уравнения движения точки:
x = 2 (еt + e-t); y = 2(et-e-t) (х, у – м; t – с ).
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t = 1 с.
3. Построить траекторию и указать полученные векторы скорости и ускорения на чертеже.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=10-10sin (3π/2)t, y=5-10cos(3π/2)t
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x = 8-8sin(π/2)t, y =4-8cos(π/2)t